
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS AGENTS UTILIZING PASSIVE
OPTICAL SENSING FOR CONTROL

by

Aaron M. Stalford

March 2019

Thesis Advisor: Vladimir N. Dobrokhodov
Second Reader: Brian S. Bingham

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2019

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
AUTONOMOUS AGENTS UTILIZING PASSIVE OPTICAL SENSING FOR
CONTROL

5. FUNDING NUMBERS

6. AUTHOR(S) Aaron M. Stalford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 The project addresses the problem of integrating a passive optical sensor onboard an autonomous unmanned aerial
vehicle (UAV) and its operation in future missions against various targets/threats. The thesis develops the analytical and
experimental software and hardware framework around a commercial-off-the-shelf quadcopter (COTSQ) for
autonomous missions. The COTSQ features advanced autopilot capabilities along with an onboard optical sensor that is
fully integrated into the control software. This research is applicable to any agent that has similar passive optical sensing
capability. The work addresses the following key research questions and concepts:

• Prove the sufficiency of the inner-outer loop design of a COTSQ autopilot to perform the autonomous sensing
and detection of targets and threats in real time

• What is the desired architecture of a high-level guidance controller to enable a single COTSQ and then multiple
COTSQs to optimally search and automatically detect targets/threats?

• How can the optical feed be used to facilitate detection and tracking of objects based on the real-time video feed
from the UAVs?

• How can this optical feed be utilized to advance the intelligent autonomy of the UAVs?
• What are the fundamental limitations of achievable performance of the following components?

o Onboard instrumentation to enable robust execution of the search & detection mission and its robust scalability
to potentially unlimited number of UAVs .

14. SUBJECT TERMS
quadcopter, drone, control, search, search theory, optical sensing, video processing, passive
sensing, multicopter, OpenCV, opencv, ROS

15. NUMBER OF
PAGES

119
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

AUTONOMOUS AGENTS UTILIZING PASSIVE OPTICAL SENSING FOR
CONTROL

Aaron M. Stalford
Lieutenant, United States Navy

BS, University of South Florida, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2019

Approved by: Vladimir N. Dobrokhodov
 Advisor

 Brian S. Bingham
 Second Reader

 Garth V. Hobson
 Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The project addresses the problem of integrating a passive optical sensor onboard

an autonomous unmanned aerial vehicle (UAV) and its operation in future missions

against various targets/threats. The thesis develops the analytical and experimental

software and hardware framework around a commercial-off-the-shelf quadcopter

(COTSQ) for autonomous missions. The COTSQ features advanced autopilot capabilities

along with an onboard optical sensor that is fully integrated into the control software.

This research is applicable to any agent that has similar passive optical sensing capability.

The work addresses the following key research questions and concepts:

• Prove the sufficiency of the inner-outer loop design of a COTSQ autopilot to

perform the autonomous sensing and detection of targets and threats in real

time

• What is the desired architecture of a high-level guidance controller to enable a

single COTSQ and then multiple COTSQs to optimally search and

automatically detect targets/threats?

• How can the optical feed be used to facilitate detection and tracking of objects

based on the real-time video feed from the UAVs?

• How can this optical feed be utilized to advance the intelligent autonomy of

the UAVs?

• What are the fundamental limitations of achievable performance of the

following components?

o Onboard instrumentation to enable robust execution of the search &

detection mission and its robust scalability to potentially unlimited

number of UAVs.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. THESIS OVERVIEW ...2
C. LITERATURE REVIEW ...3
D. THESIS CONTRIBUTIONS ..4

1. Hardware and Software Architecture ...4
2. Optical Lateral Range Curve Analysis ..4
3. Vector Path Following Algorithm ..4
4. Vision-Based Algorithms Onboard an Agile UAV4

II. BASIC QUADCOPTER COMPONENTS ..7
A. INTRODUCTION TO THE COMMERCIAL-OFF-THE-

SHELF QUADCOPTER ...7
B. COMMUNICATION STRUCTURE FOR COTSQ...............................7
C. COMMUNICATION STRUCTURE FOR AUTONOMOUS

CONTROL ...8
D. ESSENTIALS OF THE SIX DEGREES OF FREEDOM

DYNAMICS OF QUADCOPTERS ...10
E. SYSTEM IDENTIFICATION ..13

1. Control Hierarchy ..13
2. Open Loop Data ...14
3. First Order Response Estimation ...18

F. COMPUTER VISION BASICS..22

III. CONTROL SYSTEM DESIGN..25
A. PATH PLANNING ..25

1. Traveling to a Point in Space ..26
2. Following a Line in Space..27

B. STATEFLOW BASICS ...29
C. OVERVIEW OF THE FULL CONTROL SYSTEM

INTERCONNECTIONS ...30
1. Inner-loop Control ...31
2. Outer-loop Implementation ..32
3. Path Follower Details ...34
4. Sequencer Details ...39
5. Path Planner Details ..40
6. Video Controller Details ..41

viii

IV. INTRODUCTION TO SEARCH THEORY ...43
A. SENSOR DEFINITION ..43
B. “COOKIE CUTTER” SENSORS ..43
C. BASIC TYPES OF EXHAUSTIVE SEARCHES44
D. BOUSTROPHEDON SEARCH ...45
E. LRC RESULTS ..46

V. SIMULATION AND TESTING ...53
A. EVALUATION OF MULTISEGMENT PATH FOLLOWING53

1. Manual Box Test ..53
2. Pentagon Test to Prove Path Following55

B. EVALUATION OF VISION-BASED DETECTION56
1. Stationary Quadcopter Test ..56
2. Detection Algorithm Robustness Test ..59

C. KEY RESULTS OF PATH FOLLOWING AND SEARCH
INTEGRATION ...62
1. Pentagon Revisited ...63
2. 5-Line Search Pattern—The Boustrophedon Experiment65
3. Box Search Pattern ..69
4. Modified Sweep Width ..70
5. Hidden Triangle Search ..72
6. 4-Line Search Test ...75

D. CONCLUSION OF EXPERIMENTAL SECTION77
1. Controller Results ..77
2. Hardware and Software Considerations78

VI. CONCLUSIONS AND RECOMMENDATIONS ...79
A. EXPERIMENTAL CONCLUSION ...79
B. EFFECTIVENESS OF SEARCH ..79
C. MOTION CONTROLLER IN FUTURE WORK80

1. Modifying Control Architecture of the Autopilot80
2. Outdoor Search ..80

D. VIDEO DETECTOR IN FUTURE WORK ..81
1. Decreased LRC Size ...81
2. Use Video Detection Cone to Optimize the Search Path81
3. Use the Pan and Tilt Function to Cover the Hidden

Triangle ...81
4. Output the Target Location, Percent of Detection, and

Timestamp So a User Can Later Go Back and View the
Video of the Event ..82

ix

5. Machine Learning and Object Recognition82
6. Indoor SLAM Using the Video Detector83

APPENDIX A. COMMUNICATION SETUP ...85
A. BEBOP_AUTONOMY PACKAGE INSTRUCTIONS85
B. SINGLE QUADCOPTERS ...85
C. MULTIPLE QUADCOPTERS...85
D. CHANGING THE IP ADDRESS FOR MULTIPLE

QUADCOPTERS ...86
E. CHANGING BEBOP LAUNCH FILES FOR MULTIPLE

QUADCOPTERS ...87
F. SOURCING THE BEBOP FOR ROS ...87

APPENDIX B. ESSENTIAL COMMANDS FOR BEBOP ..89
A. CONNECTING TO THE BEBOP ...89
B. BASIC COMMAND LINE COMMUNICATION WITH THE

BEBOP ..89
C. CHANGE THE DYNAMIC CONTROLS TO MAKE BEBOP

MORE ACROBATIC ..90
D. VIEW THE VIDEO FROM THE BEBOP VIA ROS FROM

COMMANDLINE..90

APPENDIX C. VIDEO DETECTOR ...91
A. SIMULINK CODE FOR ROS VIDEO PROCESSING91
B. FINDING COLOR CODE FOR IMAGE MASK.................................92

LIST OF REFERENCES ..95

INITIAL DISTRIBUTION LIST ...97

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. COTSQ communication structure. Adapted from [7].8

Figure 2. Communication structure for indoor autonomous flight. Adapted
from [7]. ...10

Figure 3. Data passed between each part of the control architecture10

Figure 4. Freebody Diagram of X quadcopter. Adapted from [10].12

Figure 5. X axis normalized step response (input is dimensionless, output is
radians) ...16

Figure 6. Y axis normalized step response (input is dimensionless, output is
radians) ...16

Figure 7. Z axis normalized step response (input is dimensionless, output is
m/s) ..17

Figure 8. Yaw axis normalized step response (input is dimensionless, output is
radians/s) ..17

Figure 9. Response for a First Order System. Source: [11].18

Figure 10. X axis normalized step response (input is dimensionless, output is
radians) with system estimate ..20

Figure 11. Y axis normalized step response (input is dimensionless, output is
radians) with system estimate ..20

Figure 12. Z axis step response (input is dimensionless, output is m/s)
normalized to 1 zoomed into 0.1 with System Estimate21

Figure 13. Yaw step response (input is dimensionless, output is m/s) normalized
to 1 zoomed into 0.1 with System Estimate ...21

Figure 14. HSV color mapping ...23

Figure 15. Moving to a point Simulink code. Source: [14]. ..26

Figure 16. Moving to a point examples. Source: [14]. ..27

Figure 17. Line following Simulink Code. Source: [14]. ..28

Figure 18. Example of line following. Source: [14]..28

xii

Figure 19. Full Simulink controller ...30

Figure 20. Bebop quadcopter block ..32

Figure 21. Simulink diagram of the output commands ...32

Figure 22. Yaw direction and magnitude selector ...33

Figure 23. Path follower controller ...34

Figure 24. Bike plant is driven by path follower controller ..35

Figure 25. Simulink code that calculates the vector CD


 ..36

Figure 26. Simulink Code that calculates the vector PD


 ...36

Figure 27. Vector triangle used in path follower controller. Adapted from [7].37

Figure 28. Simulink code that calculates the normal vector N


 to the line................37

Figure 29. Simulink code for transition tracker ..38

Figure 30. Ideal quadcopter simulation ...39

Figure 31. Velocity selector ..39

Figure 32. Sequencer Stateflow controller ..40

Figure 33. Tennis ball detection in color ...41

Figure 34. Tennis ball detection in binary ...42

Figure 35. No detection in color ..42

Figure 36. No detection in binary ..42

Figure 37. Attempted exhaustive search. Source: [16]. ..45

Figure 38. LRC test setup ..46

Figure 39. LRC centerline test ..48

Figure 40. LRC 0.5 m test ...48

Figure 41. LRC 1 m test ..49

Figure 42. LRC 1.5 m test ...49

xiii

Figure 43. LRC 2 m Test ...50

Figure 44. LRC 2.5 m test ...50

Figure 45. Lateral Range Curve ..51

Figure 46. Waypoints for 6 x 6 m search utilizing 3 m sweep width51

Figure 47. Manual waypoint test verifies basic functionality of the quadcopter54

Figure 48. “Pentagon” test desired and actual flight path ...56

Figure 49. Dynamic “detection test” target far right ...57

Figure 50. Dynamic “detection test” target centered ..58

Figure 51. Dynamic “detection test” target left ...58

Figure 52. Dynamic “detection test” target far left ...58

Figure 53. Frame prior to detection in the “robustness test”59

Figure 54. Initial object detection frame prior to average being met60

Figure 55. Detection frame with the average detection value and blob size being
met..60

Figure 56. Full video background during the “robustness” test61

Figure 57. Initial detection in front of the entire background61

Figure 58. Full detection in front of the entire background ..62

Figure 59. “Revisited pentagon” test with detection ...63

Figure 60. Time history plot of detection ..64

Figure 61. First detection during the “pentagon” test ...64

Figure 62. Second detection during the “pentagon” test ...65

Figure 63. “5-line search” desired and actual flight path with target location66

Figure 64. “5-line search” test with color coded detection and target location66

Figure 65. Time history plot of detection for the “5-line search” test67

Figure 66. “5-line search” test first detection ..67

xiv

Figure 67. “5-line search” test second detection ...68

Figure 68. “5-line search” test third detection ...68

Figure 69. “5-line search” test fourth detection ..68

Figure 70. “Box search” test with detection ..69

Figure 71. Time history plot of detection of “box search” test70

Figure 72. Detector geometry from the “box search” experiment with red area
representing a hidden spot. ..71

Figure 73. Hidden triangle during search ..72

Figure 74. “Hidden triangle” test with detection ...73

Figure 75. Time history plot of detection for the “hidden triangle” test73

Figure 76. “Hidden triangle” test initial detection ..74

Figure 77. “4-line search” path..75

Figure 78. “4-line search” test results with detection and target location75

Figure 79. Time history plot of detection for the “4-line search” test76

Figure 80. “4-line search” test first detection ..76

Figure 81. “4-line search” test second detection ...77

Figure 82. “4-Line search” test third detection ...77

Figure 83. Full Simulink video detector ..91

Figure 84. ROS topic subscription and matrix transformation92

Figure 85. Simulink logic to apply detect/no detect to video92

Figure 86. Video Feed with RGB values ..93

Figure 87. Colorizer.org color palette. Source: [20]. ..93

xv

LIST OF TABLES

Table 1. Tennis ball location for LRC test ...47

Table 2. Detection rate of tennis ball for LRC ...47

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

COTS
COTSQ
CVBridge
DOF
GCS
LOS
LRC
OpenCV
PWM
R&D
RGB
ROS
RPMs
TOI
UAVs
uint8
VIO
VMCS

Commercial-off-the-Shelf
Commercial-off-the-Shelf Quadcopter
Computer Vision Bridge
Degrees of Freedom
Ground Control Station
Line of Sight
Lateral Range Curve
Open Source Computer Vision Library
Pulse Width Modulation
Research and Development
Red Green Blue
Robot Operation System
Revolutions per Minute
Target of Interest
Unmanned Aerial Vehicles
Unsigned Integer 8 Bit
Visual Inertial Odometry
Vicon Motion Capture System

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

ACKNOWLEDGMENTS

I would like to thank my wife, Meghan Stalford, for all her assistance, support, love

and understanding through the thesis process.

I would also like to thank my two daughters, Shannon and Keira, for sacrificing

many weekends with me so that I could advance my education.

I would like to thank my thesis advisor, Associate Professor Vladimir Dobrokhodov

of the Mechanical Engineering department of Naval Postgraduate School. Professor

Dobrokhodov was willing to take me on when other resources failed. His door was always

open and he was always willing to guide, teach or correct. Without his mentorship this

thesis would not have been possible.

I would like to thank Professor Brian Bingham for his mentorship of my thesis and

continual guidance that allowed me to improve my knowledge and writing ability.

I would like to thank Lee Van Houtte, who was instrumental in acquiring and

maintaining all the physical components for this thesis.

I would also like to thank Patrik Pietschmann and Rousseau for the numerous songs

they have composed on YouTube that allowed me to get through writing this thesis.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION

The United States Navy has focused on autonomous platform use in the air, land

and sea to conduct missions such as surveillance, detection, maintaining military presence,

and search and rescue [1]. One major problem with the current state of technology is the

existential cost of military autonomous platforms. The cost is represented by both the

research and development (R&D) efforts and the cost of highly trained personnel required

to operate the unmanned systems. This thesis addresses a specific dimension of the R&D

cost that is defined by the capabilities of a single autonomous platform. Special attention

is paid to the scalability of the UAV that can potentially provide exponentially higher

system performance when the number of autonomous platforms used in cooperative

missions is increased. The extension of an unmanned vehicle to cooperation or swarming

allows not only higher expected system level performance but also enables graceful

degradation of performance of the system when a single unmanned vehicle or a subset of

the swarm is lost during the mission. Typically, mission planners and decision makers are

not as willing to lose high-dollar assets. What if the platforms were smaller, much more

affordable, and almost as capable as their larger counterparts? What if these capable drones

are used cooperatively to achieve the mission objective? What are the bounds of their

cumulative capability and how does the swarm performance degrade with the loss of its

members?

The commercial-off-the-shelf quadcopter (COTSQ) has gained popularity in the

private sector for everything from hobby flying to 4K video-making tasks. These COTSQs

have advanced sensors typical of full-scale manned systems, such as GPS, accelerometers,

gyroscopes, magnetometers, and miniature HD video cameras. They also come with

advanced control features that allow them to hover in one place when the user is not

providing input, follow a person while videoing, and transit from one waypoint to another

via pre-programmed paths. These COTSQs have nearly achieved capabilities of more

expensive military-grade drones. Can these COTSQs be changed or modified in a way that

allows the U.S. military to control them autonomously for military operations? If so, having

2

autonomous capability in a COTSQ would greatly reduce the costs from tens or hundreds

of thousands of dollars for each autonomous platform to below a thousand dollars for each

platform. This cost savings would allow for more field experimentation and the

advancement of technology in this field as the decision makers would not be as afraid of

losing a lower-dollar asset. The decreased fear of losing a high-value asset would also allow

many more autonomous platforms to be deployed by the military members that will be

using them every day. Advancements will be made much quicker due to larger numbers of

realistic experiments and data that is received from each of those experiments.

B. THESIS OVERVIEW

This thesis developed control architecture, both hardware and software, that can be

used across numerous platforms in air, land, and sea. The focus of this thesis is on aerial

platforms; however, the theory can be extended to other platforms equipped with passive

optical sensors. In the envisioned scenario the COTSQ was used as an ISR platform. The

area of search was predetermined and was used as bounds for the experiment. A single

quadcopter was deployed in the given search area utilizing a predetermined search path.

The quadcopter then followed this predetermined search path and looked for Targets of

Interest (TOI). The forward-looking camera was used as the detection sensor in this case

in conjunction with the visual detection software. All other sensors were used by internal

controllers to create stable flight conditions. In order to get to this point, several

fundamental capabilities had to be completed along the way.

First, the COTSQ was taken from the traditional COTS configuration and changed

to an autonomous configuration. This required performing experiments to understand the

communication paths and the flight dynamics of the COTSQ. Experiments were also

performed to understand the key requirements of integrating the front-facing high

definition camera with the visual detection and real-time flight control software. This thesis

gives the basics for understanding the operational limitations of the COTSQ in military

missions. This information also provides a detailed understanding of the expected

performance of the inner loop controller (autopilot) on the COTSQ.

3

The next challenge was to determine what path planning approach should be taken

and to design a controller to execute that approach. The onboard autopilot was used in its

native configuration. A ground control station (GCS) was developed that provides higher

level commands to the quadcopter. The GCS autonomously operates the outer loop

controller, path planning controller, sequencer of waypoints, and the visual detection

software. These high-level control actions could be performed onboard but would require

extensive changes to the proprietary software on the COTSQ. The embedded

implementation is beyond the scope of this thesis.

Once the COTSQ was able to be flown in autonomous flight, attention was shifted

to the search theory. The different search theories had to be analyzed for the most effective

search path for the given geometry of the search area and the detector; then the TOI

geometry, shape, and color had to be selected so that the detector (High Definition Camera)

could see the shape independently from the background in conjunction with the visual

detection software. Once all these pieces were in place, the final experiments were

performed. The different pieces from the individual flight paths, the video tests, and

integration of the two were combined in the culmination of the final search test.

C. LITERATURE REVIEW

The task of computer vision and its integration in control is certainly not a new

research topic that is represented by hundreds of research publications and commercial

products available on the market. However, the development of vision-based processing

and its integration with safety-critical real-time flight control onboard of small UAVs with

limited signal processing capabilities is a relatively new area represented by some growth

of research published started in the last 8–10 years. In 2008, a group from Brigham Young,

Stanford and Vanderbilt Universities used a fixed-wing UAV with video capabilities to

perform search and rescue research [2]. In this experiment, the fixed-wing UAV flew high

above a wilderness area performing a search in order to improve detection algorithms. In

2010, a group from the University of Oxford used quadcopter vision detection to map and

search areas for human rescue operations [3]. In 2015, a group form National School

Polytechnic in Algeria was able to use an AR Drone 2.0 to detect color in the quadcopter

4

video feeds. This group was also able to use fiducial markers as detection targets for the

quadcopter [4].

D. THESIS CONTRIBUTIONS

1. Hardware and Software Architecture

The hardware and software architecture that was developed to modify the COTSQ

to a fully autonomous platform is detailed in Chapter III. The architecture integrates

guidance (optimal search), navigation, and control (path following) software with essential

vision-based detection and identification algorithms all running in real-time. The complete

architecture allows for an agile video platform to be used for target search and detection.

Successful demonstration of the experiments culminated in the effective integration of all

components into an inexpensive passive optical search tool.

2. Optical Lateral Range Curve Analysis

The optical lateral range curve (LRC) testing and analysis is detailed in Chapter IV.

The LRC test is a systematic approach of quantifying the lateral range or sweep width of

an optical sensor. The LRC method provides a way of making a non-uniform sensor into a

cookie cutter sensor that can be used for search and detection optimization.

3. Vector Path Following Algorithm

As a part of the overall “mission controller,” the quadcopter had to be able to join

and follow lines in order to execute the search and detection mission. The path following

algorithm was expanded from a 2D approach to a 3D approach. This new 3D approach

uses vector geometry to guide the quadcopter to the line rather than heading error and

distance error to the line. This new path following algorithm is detailed in Chapter III.

4. Vision-Based Algorithms Onboard an Agile UAV

The vision detection architecture provides another entry point into the world of

robotic vision. Having an HD video feed that is accessible for real-time analysis on a highly

agile quadcopter increases the speed and range of robotic vision and detection. All of the

5

analysis tools that are being used in robotic vision including machine learning, face and

object recognition, and edge detection can be used on this agile platform.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BASIC QUADCOPTER COMPONENTS

A. INTRODUCTION TO THE COMMERCIAL-OFF-THE-SHELF
QUADCOPTER

The choice of the COTSQ that was used for this experiment was not a trivial one.

Rapid advancements of microcontrollers, miniature sensors, and actuators resulted in a big

variety of inexpensive RC quadrotors on the commercial market. Achieving autonomous

flight with a COTSQ requires the ability to communicate control commands from a

“computer” in real time with a high update rate to achieve flight agility not achievable by

human pilots. Another deciding factor was the ability to integrate a quadcopter with an

indoor positioning system such as the Vicon Motion Capture System (VMCS) to provide

state feed back of the COTSQ in an indoor environment. guarantee safety of flight during

the experiment. The quadcopter was chosen due to its method of communication with the

transmitter and the established ability to utilize the Robot Operation System (ROS). This

communication established a means of interacting with the low-level controls of the

COTSQ. The quadcopter chosen was the Bebop by Parrot Inc. This quadcopter has GPS,

accelerometers and magnetometers that are integrated by the Inertial Measurement Unit

(IMU). It also has a 14 mega pixel 1080p HD camera with 3 axes digital stabilization [5].

The Parrot Bebop quadcopter also has Visual Inertial Odometry (VIO) algorithms

implemented onboard. VIO uses a downward facing camera to compare features within

images with measurements from the IMU to provide the odometry measurements and

localize the quadcopter within a GPS-denied environment [6].

B. COMMUNICATION STRUCTURE FOR COTSQ

The Parrot Bebop quadcopter utilizes a 2.4 GHz or 5 GHz Wi-Fi connection for

telemetry data and control link [5]. The network connection is established between the

Parrot Bebop Quadcopter and either the Parrot Bebop Controller or a smart device running

the FreeFlight application [5]. In this configuration, the Bebop acts as the network host

while the controller or smartphone act as the network client. The user can send roll, pitch,

yaw and altitude commands in order to control the flight attitude; these commands are sent

8

via the proprietary communication structure. See Appendix A for technical information on

Bebop communications.

All the Parrot Bebop quadcopters are delivered with the same 192.168.42.1 default

IP address [5]. In the stock configuration, no more than one quadcopter can be connected

to the same controller. User commands given through the control channel are then

packaged via User Defined Protocol (UDP) and transmitted to the quadcopter where they

are unpackaged and executed by the flight control system. The sensor data (such as GPS,

velocity, acceleration, altitude and video feed) is passed to the user and the control

commands are sent back to the onboard autopilot via the same UDP communication.

Therefore, the only components in the communication/navigation framework are the

quadcopter identified by the IP address and the controller. The overall default

communication structure can be seen in Figure 1.

The blue arrow represents user commands and the red arrow represents sensor data passed
to the operator

Figure 1. COTSQ communication structure. Adapted from [7].

C. COMMUNICATION STRUCTURE FOR AUTONOMOUS CONTROL

In order to enable automatic control of the unmanned aerial vehicle (UAV), the

stock IP address is changed to 192.168.101.1 through 192.168.103.1. The onboard software

change did not require re-flashing of the Bebop firmware. The IP address change was done

so that each of the multiple (three in the scope of this work) quadcopters would act as a

9

host on their own subnet, see more details on the configuration in Appendix A. This then

allows one control algorithm executed on a single PC to connect to all three subnets (3

quadcopters) and send individual commands to each quadcopter. If the IP addresses were

in the same subnet, then the commands for the first quadcopter would be executed by all

the quadcopters in that subnet and operators would not be able to send individual

commands.

The custom-built control algorithm is executed on a single PC that represents a

GCS. The GCS runs a ROS operating system in Linux [8]. For this GCS to communicate

with the quadcopter, the UDP packets must match what the quadcopter receives from the

controller. This is done with a Linux SDK package called Bebop_Autonomy that changes

the ROS topics into the communication form that the quadcopter can recognize.

The GCS brings all the sensor data in and processes it to send roll, pitch, yaw, and

altitude commands to the quadcopter. The sensor data that come into the GCS for this

experiment include position and attitude data from a VMCS and video stream from the

quadcopter. Due to the high bandwidth requirements of the video link, the IMU data from

the Bebop is updated at 5 Hz. The VMCS system and the position data from the VIO on

the Bebop are updated at 100 Hz. If the quadcopter is flown outside, the VMCS is replaced

with the onboard GPS and VIO. The controller is discussed below but is designed to

transition seamlessly between VMCS and VIO feedback.

In the indoor configuration, the attitude of the quadcopter is captured by the VMCS,

this data is processed by the VMCS computer and sent to the GCS. Once in the GCS, the

data is processed by the custom-built high-level flight controller and the corresponding

low-level commands are sent to the quadcopter. These commands are processed by the

quadcopter and executed as attitude changes which are then read by the VMCS again. This

provides the feedback loop of all states for the experiment. This whole communication path

can be seen in Figure 2. The data that is passed between each controller is shown in

Figure 3. The components in Figure 3 will be expanded upon in Chapter III.

10

Figure 2. Communication structure for indoor autonomous flight.
Adapted from [7].

Figure 3. Data passed between each part of the control architecture

D. ESSENTIALS OF THE SIX DEGREES OF FREEDOM DYNAMICS OF
QUADCOPTERS

Multicopters are UAVs that use multiple propellers to move in rotation and

translation in space. These multicopters can be in many different configurations, but

typically will be symmetric and have an even number of propellers; these are the baseline

characteristics of most simple designs. The propellers themselves can have two or more

blades. Movement of the multicopter is accomplished by speeding up or slowing down

11

pairs of the multicopter propellers. The four-propeller case with X configuration will be

discussed from this point forward. This configuration can be seen in Figure 4.

In quadcopter flight, each propeller only provides thrust in the body fixed z-

direction. Also, the only input to each of the propellers is the motor speed. Thus, the

propeller speed can be increased or decreased while in flight which increases or decreases

the thrust from the propeller. The sum of

 2
i f iF K w  (1)

for all four motors produces the lift and translational for the quadcopter [9]. In (2), ω is the

angular velocity of the propeller and fK is the aerodynamic constant in the vertical

direction [9]. The

 2 i m iM K w  (2)

is caused by the drag due to air resistance. In (2), ω is the angular velocity of the propeller

and mK is the aerodynamic constant in the horizontal direction. The maximum torque on

the motor is limited by (2) [9].

In order to get motion in any direction other than the z-axis, the total force produced

by the rotors needs to be rotated in the desired direction of travel. Rotating the UAV body

with multiple rotors spinning requires a controlled mismatch in propeller speed. This

mismatch can cause a torque on the body or a force on the body depending on which pairs

of propeller blades are sped up and slowed down. Torques will cause the body to rotate

about its center of gravity while a force will cause the body to translate. The

 1 2 3 4TF F F F F mg     (3)

in the Z direction cause the quadcopter to ascend, descend or hover [9]. If (3) equals zero,

then the quadcopter will hover. If (3) is greater than zero, then the quadcopter will climb

and if (3) is less than zero then the quadcopter will descend.

12

Figure 4. Freebody Diagram of X quadcopter. Adapted from [10].

Once the quadcopter has a roll or pitch angle (via controlled differential of the RPM

of opposite rotors) it will tilt in the direction of travel because a portion of the total (1) is

projected into X and Y directions, thus causing lateral motion in that direction. In turn, this

tilt angle takes some of the thrust out of the z-axis and the quadcopter will sink. In order to

maintain level flight, the speed of the motors must be increased to compensate for the same

amount of lift as before. The

 1 4 2 3((() ()))xT F F F F L     (4)

and

 1 2 3 4((() ()))yT F F F F L     (5)

cause the quadcopter to pitch and roll [9]. L in (4) and (5) is the half distance between

propellers.

When the quadcopter is moving laterally and the operator needs it to stop, the

pitching or rolling angle must be fully reversed for the quadcopter to slow translation and

eventually come to a stop. This is accomplished by reversing the high thrust and low thrust

motors in (4) and (5).

13

E. SYSTEM IDENTIFICATION

When using a commercial-off-the-shelf quadcopter with a proprietary embedded

inner loop (that also does not allow any modification of its architecture other than tunable

parameters that affect flight agility), it is difficult to know what control methods are being

employed and how quickly the inner loop will react to commands without prior testing. If

the inner loop control laws were known the system response would be able to predict the

performance of the inner loop. Transient response characteristics of the quadcopter define

the dynamics of states of the visual sensor that is rigidly attached to the platform. In many

cases the Line of Sight (LOS) of the sensor can be pointed, however, it is not gyro-

stabilized in inertial space. Considering the application of the sensor to the task of visual

search, the transient characteristics of the LOS are essential in building the robust detection

capability. More details about the video sensor and detection criteria are given in Section

G below. Ultimately if the relative velocity between sensor and target is too high, the video

sensor could miss the target due to minimum requirements need to constitute a detection.

 As previously discussed, the user controls the quadcopter with a transmitter via a

Wi-Fi link. The onboard autopilot simplifies the control task for a human by decoupling

the attitude dynamics of angular motion. This so-called augmentation mode is typical for

fly-by-wire systems. Decoupling control channels mean that the operator can give separate

commands and the autopilot holds the other states constant. The four actions controlled by

the operator are the roll and pitch angle, the yaw rate, and the altitude rate. These

commands are broken into individual channels so that the human operator can physically

control the quadcopter. This decoupling of control channels on the quadcopter can be

assumed because coupling on multiple channels would complicate the controls to the point

that the quadcopter would not be able to be flown by an operator. The GCS is going to

utilize the four decoupled channels for control. The system identification testing was

utilized to establish a baseline for the inner loop functionality and control method.

1. Control Hierarchy

The control architecture of a typical multicopter consists of inner-loop autopilot

and the outer-loop controller. In manual RC mode the outer-loop control is implemented

14

by a human pilot that uses visual perception of the flight to solve the guidance and

navigation tasks. In automatic mode, the GCS computer utilizes state measurements from

VMCS and onboard IMU to essentially solve the same guidance and navigation tasks by

the automatic control algorithms. The inner loop controller takes in low-level commands

of roll, pitch, yaw and altitude and mixes these commands in such a way as to output

individual pulse width modulation (PWM) signals that are then turned into motor

revolutions per minute (RPMs). The inner loop has its own feedback loop so that the

RPMSs that the motors are spinning at are the RPMs that the inner loop is commanding.

The outer loop controller is what provides the roll, pitch, yaw and altitude reference

commands to the inner loop. The outer loop itself takes in global X, Y, Z and Yaw

coordinates and converts them into the specific roll, pitch, yaw and altitude commands.

The outer loop also has a feedback loop that ensures that the current roll, pitch, yaw and

altitude states follow the desired commands.

The architecture of the developed outer-loop controller includes the path generation

and the path following control algorithms. The path planner solves the mission level task

by providing a continuous path as a sequence of straight-line segments; this is a baseline

primitive that we adopt in the project. The path planner is combined with a logical

sequencer that “discretizes” the path by a sequence of waypoints; its objective is to produce

a sequence of two WPs at each instance of flight so that the path following algorithm is

always defined. The sequencer is implemented as a Stateflow subsystem.

2. Open Loop Data

The first step in the inner loop identification was to perform open loop data

collection in response to a set of predefined low-level commands (also known and

implemented as doublets); in this experiment, the GCS gave the Bebop a doublet step

command in a single control axis either X, Y, Z or Yaw. A doublet is a positive step

followed by a double negative step then followed by a positive step again. The doublet

causes the quadcopter to return to its initial starting location.

The quadcopter was flown within the operational field of the VMCS which tracked

the x, y, z, roll, pitch, and yaw response of the quadcopter after giving the doublet

15

command. Nine tests were performed on each axis broken up into groups of three. Each

group was given a different magnitude step command. The step response was tested on all

four command axes. The results for the groups of each axis were normalized to a

dimensionless input step response of 1.0 and then plotted. The results can be seen in

Figures 5–8. For all four control channels, the command is a dimensionless value between

-1 and 1. For the X and Y axis the control signal changes the roll and pitch angle. For the

altitude command, the accent or decent rate is controlled. When the fourth channel is

commanded it results in a yaw rate. For all four control channels during the test, the step

in the positive direction was commanded for 3 seconds and in the negative direction for 4

seconds. The uneven doublet was commanded to get the full response of the system and

allow for steady state identification in both directions. The uneven doublet also captures

the full reversal response from positive to negative direction. For each test at the end of the

return step command, the quadcopter is commanded back to zeros in all four-control axis.

The zero command in all four axes produced a large transient that was observed in the X

and Y axis at the 16 second mark. The large transient is a result of the Bebop’s onboard

controller essentially applying the brakes to halt all motion in that X and Y axis. The zero

command only occurs during the very specific case of when all commands are zeros and

does not occur during any flight regimes as the controller will always be sending some

nonzero command in one of the axes.

16

-

Figure 5. X axis normalized step response (input is dimensionless, output is
radians)

Figure 6. Y axis normalized step response (input is dimensionless, output is
radians)

17

Figure 7. Z axis normalized step response (input is dimensionless, output is m/s)

Figure 8. Yaw axis normalized step response (input is dimensionless, output is
radians/s)

18

3. First Order Response Estimation

Once the data was normalized, the process of identifying the system and analyzing

the data was completed. The shape of the curve in Figures 5–8 has a first-order response in

all four axes. Thus, the general equation for first-order step response was used to model

the system. The

 () 1 atc t e  (6)

provides the general step response for a first order system and is in the exponential

approach form of the Laplace Equation [11]. The graphical result of (6) can be seen in

Figure 9.

Figure 9. Response for a First Order System. Source: [11].

The first-order system model does not fully match the data. At the beginning of

each step response, a delay must be accounted for to fully match the system response. The

data was analyzed, and the time delay identified as 0.2 seconds. This delay was measured

across all channels and is from communication delays

19

 The delay is the time it took for the controller to create the signal, transmit it to the

quadcopter, be processed by the inner loop, execute the command as an attitude change in

the quadcopter, be captured and processed by VMCS, transmit the position to the

controlling station and be recorded by the controlling station. The delay is only exhibited

in the outer-loop controller. The inner-loop delay is assumed to be much smaller due to the

numerical execution frequency of the inner-loop. The

 0.22() 0.65
(2)

s
Xc s e

s s
  


 (7)

shows the x axis estimate for the onboard autopilot controller. The results of (7) are plotted

over the recorded data and can be seen in Figure 10. The

 0.22.5() 0.68
(2.5)

s
Yc s e

s s
  


 (8)

shows the y axis estimate for the onboard autopilot controller. The results of (8) are plotted

over the recorded data and can be seen in Figure 11. The

 0.24.54() 0.025
(4.54)

s
Zc s e

s s
  


 (9)

shows the z axis estimate for the onboard autopilot controller. The results of (9) are plotted

over the recorded data and can be seen in Figure 12. The

 0.23.34() 0.041
(3.34)

s
YAWc s e

s s
  


 (10)

shows the yaw estimate for the onboard autopilot controller. The results of (10) are plotted

over the recorded data and can be seen in Figure 13. This process of establishing a baseline

for the inner loop was proven adequate when the formulated system

20

Figure 10. X axis normalized step response (input is dimensionless, output is
radians) with system estimate

Figure 11. Y axis normalized step response (input is dimensionless, output is
radians) with system estimate

21

Figure 12. Z axis step response (input is dimensionless, output is m/s) normalized
to 1 zoomed into 0.1 with System Estimate

Figure 13. Yaw step response (input is dimensionless, output is m/s) normalized
to 1 zoomed into 0.1 with System Estimate

22

F. COMPUTER VISION BASICS

Computer vision is based on the ability for a computer to use an optical sensor to

see the environment it is in. Most modern robots use at least one optical sensor to interact

with the world. The prolific use of optical sensors has not always been the case and has

really come to the forefront of technology due to the reduced expense of digital cameras.

The sensor in the digital camera breaks the captured light into three matrices that represent

the color values for Red Green Blue (RGB) [12]. The intensity of each color in the

corresponding matrix takes an unsigned integer 8bit (uint8) value from 0–256. When all

three of these matrices are combined, a single-color image is formed [12]. These RGB

matrices can be converted into other methods of seeing the same image. For instance, the

RGB image can be converted by a hue transformation into a Hue Saturation Value (HSV)

image [12]. The transformation from RGB to HSV is a change from a Cartesian coordinate

system into a Cylindrical coordinate system [12]. Hue images are also comprised of three

matrices. The first being the hue itself, the next is the saturation of the color and the last is

the brightness of the color [12].

Hue images have a distinct advantage when trying to filter a color that is not just

red, green, or blue. In hue images all colors are mapped to 360 degrees [12]. For instance,

red is mapped to the degrees between 0 and 60, yellow is mapped to the degrees between

60–120 and so on [12]. All the colors are centered around the Z axis. The saturation and

brightness are mapped in linear ranges from 0 to 100%. Saturation is from the center of the

cone outward and brightness is along the Z axis [12]. This mapping can be seen in

Figure 14.

23

Figure 14. HSV color mapping

Hue images are also less susceptible to the variation of lighting conditions. For

instance, in low level light a green tennis ball can look green and with higher levels of light

it can look yellow or even white to some sensors. In order to capture the tennis ball in the

image, large changes in a RGB filter are required. The only changes required for a hue

image is a change in the brightness band. This extensive color mapping pallet allows the

programmer to more precisely select colors from an image and apply masks to that image.

A mask is an overlay applied to the image that conceals the unwanted colors. The mask

typically has an upper and lower limit. Any color within the upper and lower limit are

displayed. All other colors are made white or black depending on the mask. This

transformation and masking process was made easier with the implementation of Open

source Computer Vision software (OpenCV).

OpenCV is an open source software library that can be programmed in C/C++,

Python, or Java [13]. This library has a Berkeley Software Development (BSD) license,

which allows for open source development. The software is not proprietary and allows for

the community that uses it to advance its capabilities. The software can be run on all major

operating systems including Microsoft, Mac OS, Linux, iOS, and Android [13]. This

library is specifically built to handle computer vision tasks such as color filtering, binary

24

filtering, contour detection, and image recognition [13]. The library can also be used for

machine learning through images. Image processing tasks require large processing and

RAM capabilities on the platform. OpenCV utilizes the ability to use multicore processing

through parallel paths that reduce the processing and RAM requirements [13]. The parallel

computing in OpenCV allow smaller devices such as a cell phone or Raspberry Pi to utilize

this software library. For further information refer to reference [13]

25

III. CONTROL SYSTEM DESIGN

The objective of the control system design is to enable autonomous control of the

quadcopter, which is typically performed from an onboard or a remote computer, to be

included into the sensing and actuation loop of the robot. Refer to Figure 1 and 2 to see the

comparison of the human operated and autonomous robots. The full controller that is

executed on the GCS takes the search field size and the sweep width of the sensor (field of

view of the camera) and converts these parameters into the automatic flight actions of the

quadcopter in order to accomplish its mission. There are many algorithms that perform data

manipulation taken from the reference commands (user inputs) and the feedback (sensor

data) to allow for precise movement of the quadcopter along the complex path.

This chapter starts with the discussion of theory behind moving the quadcopter

from one location to another. Next, it presents a model of a “bike” that is used to represent

the lateral movement of the quadcopter. The video camera needed to face the direction of

flight so that it is imperative to enable the camera directional control while in flight. This

chapter also discusses various modes of control for a multicopter, including heading

control. Controlling the heading of the quadcopter is the least efficient and slowest

responding mode of control due to the flight dynamics explained in Chapter II. Typically,

quadcopters are flown with a fixed heading and only roll and pitch are used for lateral

movement.

A. PATH PLANNING

There are an infinite number of paths that can be taken to get from one point to

another. One method of solving the task is to fly along the straight segments that discretize

an arbitrary path in space. This method is outlined in [14]. In this method, a bike is driven

by only two primitive commands: the velocity and the steering angle that allows the bike

to reach the new point. This method is detailed below. Moving from point to point can be

taken one step farther. In the next more complex method, the bike joins the line between

the two points and continues along the line until the final point and orientation is reached.

This method is also outlined in [14] as well and will be detailed below.

26

1. Traveling to a Point in Space

In the example that is given in [14], Peter Corke demonstrates that by using the

model of a bike in a two-dimensional space, you can start at any point and only by

controlling the speed and the steering angle, the bike can be driven to any other point within

that space. This model uses proportional control only and introduces the principles of

feedback control. In general, the same architecture can be extended to a more general class

of controllers such as PID. See Figure 15 for the example.

Figure 15. Moving to a point Simulink code. Source: [14].

The essence of Corke’s example is that the bike can be turned in a circle until the

bike is pointing at the new point, at which time the bike is ridden straight toward the desired

end point. The

hK   (11)

provides the steering command to the bicycle plant [14]. The (11) is comprised of hK

which is the proportional gain that controls the steering angle, and  is the error between

the desired steering angle and the actual steering angle. The

* 2 2
2 1 2 1(() ())v x x y y    (12)

is proportional to the distance from the bike’s current location to the desired point [14].

The relation

*
vv K v  (13)

27

is derived from (12) as suggested by reference [14], where (13) is comprised of Kv , which

is the proportional gain that controls the amplitude of the velocity, and v* is the distance

from the current position to the final point. Thus, (13) is faster the farther away the bike

is from the desired point and slower the closer it is to the desired point. Eight different

cases of the bike riding example can be seen in Figure 16 [14]. Each of the different

cases in Figure 16 start at a different location.

Figure 16. Moving to a point examples. Source: [14].

The problem with moving to a point is that the approach to the point is not

controlled and therefore the orientation of the bike at the final point is not controlled. It is

important to note that control of the approach angle, i.e., the body heading of the camera

is essential for the envisioned search mission. Due to the quadcopter requiring a specific

heading at the next waypoint, the approach that only moves the quadcopter to the next point

is not sufficient. A better approach is to draw a straight line between the points and then

have the bike join the line.

2. Following a Line in Space

In the “Following a Line” example demonstrated in [14], the code utilizes a line

provided in standard form and the position of the bike. It then drives the bike to join the

line. The algorithm can be seen in Figure 17. This method allows waypoints to be strung

together into a continuous path while controlling the orientation of the bike when it reaches

28

the next desired point. In Figure 18, four different starting orientations of the bike are

shown that are driven to join the line.

Figure 17. Line following Simulink Code. Source: [14].

Figure 18. Example of line following. Source: [14].

The algorithm utilizes two errors in the state of the bike relative to the desired line.

The first error is the shortest distance from the bike to the line; measured along the line

normal to the current location. The next error is the difference between the current heading

of the bike and the direction of the desired line. The

 (*)d hK d K        (14)

29

utilizes both the distance error and the heading error to provide the control that drives the

bike to the line [14]. In (14), dK is the proportional gain acting on distance error, 𝑑𝑑 is the

normal distance to the line, hK is the proportional gain acting on the directional error, *

is the desired heading, and  is the current heading [14].

The objective of the controller is to regulate both errors to zero. The distance from

the bike to the line will be zero and the heading will be parallel to the line as seen in Figure

18. If the bikes path is parallel to the line and the position of the bike is on the line, then

the bike will continue to follow the line. How quickly and smoothly the bike joins the line

and continues to follow the line is controlled by two parameters: 𝐾𝐾𝑑𝑑 and 𝐾𝐾ℎ. Corke’s

method provides the basic architecture of the path following controller in two-dimensional

space.

B. STATEFLOW BASICS

Developing the ability to fly along a straight line requires an algorithm that

generates a new straight segment when the robot finishes the previous one. The

implementation of the segment-following approach utilizes a logic-based sequencing

algorithm that triggers the transition to the next segment based on the continuous analysis

of the distance to the end point of the current segment. In Simulink, the changing of states

utilizing logic is best handled with a Stateflow controller. Stateflow is a separate

environment in Simulink that allows for sequential decision logic between different states

of the machine using flowcharts, state transition tables or truth tables. For more information

on Simulink Stateflow refer to [15].

Stateflow is used in the final controller to determine whether the quadcopter is

traveling along a line segment or has reached the end of the current line segment and needs

to switch to the next line segment. Each line segment is defined by the previous waypoint

and the next waypoint in the list. These waypoints will be referred to as the previous

waypoint and the desired waypoint for future discussions. The waypoints themselves are

imported into the Stateflow machine from the path planning software. More detail about

the Stateflow machine and the path planning software is in the corresponding sections

below.

30

C. OVERVIEW OF THE FULL CONTROL SYSTEM
INTERCONNECTIONS

This section details the general overview of all parts of the quadcopter controller

and provides the details for all main subsections of the overall “mission controller.” The

highest-level view of the Simulink controller can be seen in Figure 19. The video processor

is implemented with a Python code that utilizes the OpenCV library with ROS topic

subscription and publishing capability in order to provide the target detection to the full

controller. For more details on the video processor see section 6 below.

Figure 19. Full Simulink controller

As seen in Figure 19, on the left is the Stateflow sequencer, in the middle is the

path following controller and on the right is the outer loop controller. On the bottom left is

the video controller detection code. The video detection code reads data from the ROS

topic /Detection. The detection data is binary and is provided as either a detect or non-

detect of the target. Also, at the top of the code is a set pace block that ensures that the code

is running in real time and does not get ahead or behind, as this would “distort” the real

time dynamics of the quadcopter.

For the following discussion of each subsystem, the flow will start at the quadcopter

with the roll, pitch, yaw and altitude commands and will work backward through the full

controller to the generation of waypoints from the path generating code. For easy

31

interpretation of the Simulink code, inputs will be displayed as green blocks, outputs will

be red blocks, operations on signals will be displayed in orange and logical operations will

be blue.

1. Inner-loop Control

The inner loop for this experiment is housed and operated on the quadcopter. Due

to this limitation, the model of the inner loop is not displayed in the Simulink controller.

The quadcopter receives four commands in order to fly autonomously. These commands

are roll, pitch, yaw and altitude. The system identification that was analyzed in Chapter II

resulted in the four equations that described the inner loop response for these four control

channels.

The roll, pitch, yaw and altitude commands are calculated by the outer loop

controller from the search trajectory discretized by the sequencer and the path follower.

The roll, pitch, yaw, and altitude commands are then fed into the Bebop Quadcopter Block.

In this block the commands are sent to the quadcopter. The final control commands are

converted from Simulink to ROS and then sent via UDP to the Bebop. This communication

allows the commands to be read and executed by the quadcopter. As previously discussed,

the ROS to UDP transition is handled by the Bebop_Autonomy SDK package and is not

pictured. The Bebop quadcopter block that houses the Simulink communication structure

can be seen in Figure 20. The Simulink repackaging includes creating a blank ROS

message called geometry_msgs/Twist which is a standard message within ROS, populating

that message with the commands created by the path following controller and publishing

that ROS message to the ROS topic Bebop/cmd_vel for its execution by the inner loop

autopilot.

32

Figure 20. Bebop quadcopter block

2. Outer-loop Implementation

The outer loop of the controller takes in the desired position from the sequencer

and outputs the roll, pitch, yaw, and altitude commands to the Bebop Quadcopter block for

control signal communication. The Outer Loop controller can be seen in Figure 21. The

outer loop uses the feedback from either the GPS and VIO (Feedback_odometry) or the

VMCS (Feedback_Vicon). This feedback is used to create an error between the desired

attitude and the actual attitude of the quadcopter. For the X, Y, and Z control signals, the

error is the difference between the desired and current states.

Figure 21. Simulink diagram of the output commands

33

For the error in yaw, a special logic controller was designed to deal with of heading

errors that cross over the boundaries at pi and -pi. This algorithm determines the magnitude

of error by using the difference in heading between desired and current and accounts for

any heading wrapping that is required. The selector also determines the shortest route

between the desired heading and the current heading and provides a direction of rotation

either clockwise (CW) or counterclockwise (CCW). The full Yaw Direction and

Magnitude Selector can be seen in Figure 22. The errors in X, Y, Z, and Yaw are then fed

into a Proportional Integral Derivative (PID) controller, which then outputs the matching

commands to the Bebop’s inner-loop.

Figure 22. Yaw direction and magnitude selector

PID controllers utilize three gains to provide the correct command to the

quadcopter. For a simple example, imagine a car that is trying to merge onto the highway

from the on-ramp. The proportional gain takes the current position error from the current

position to the desired position and determines the magnitude of the turn needed to drive

that error to zero. The Integral gain takes the prior error and tries to drive the prior error

between the current position and the desired position to zero. The Derivative gain looks at

the future position by analyzing how quickly the car is approaching the desired position

and tries to correct the speed of approach so that the car does not miss the desired lane and

go through to the other side of the lane or worse the next lane over.

Using the values from the PID calculations, the final control values are then sent to

the Bebop Quadcopter block and transmitted to the quadcopter via the communication path

detailed above.

34

3. Path Follower Details

The path follower takes in previous and desired waypoints provided by the

stateflow sequencer and creates a reference line between the waypoints. It then simulates

an ideal quadcopter that joins the line between the two waypoints, utilizing the initial

location of the real quadcopter and transits to the desired waypoint. Once the waypoint is

reached, it provides feedback to the Sequencer and the next set of waypoints are calculated.

This process is repeated until all the waypoints are visited. The attitude of the ideal

quadcopter is output and is used as the desired position for the outer loop controller.

The specific way Bebop accepts control commands requires significant changes to

the two-dimensional line following algorithms from [14]. In Corke’s approach, he used

two errors: one due to the distance to the line and another due to the misalignment with the

line. These two errors were derived in different units to come up with a velocity and

heading for the bike. This method accomplishes the task of getting a bike to join a line but

a better solution for Bebop quadcopters is discussed below. Next, the bike’s motion is

considered in a two-dimensional plane and the height is considered constant. The

quadcopter is dissimilar in this regard and moves in three dimensions, so a three-

dimensional solution had to be derived. The Path Follower Controller is a full three-

dimensional solution to these issues and can be seen in Figure 23.

Figure 23. Path follower controller

35

The main differences between the two-dimensional line follower from [14] and the

three-dimensional approach is that all the errors are calculated as vectors. Therefore, they

can better represent the errors in three dimensions. To verify that the new vector method

was just as adequate as Corke’s Line following algorithm, the path follower controller was

initially used to drive the bike plant in his code [14]. The new vector approach drives the

bike to the line just as well as the two-dimensional approach in [14]. The plotted results of

the experiment can be seen in Figure 24. The vector method was then applied to the

quadcopter as the new path following algorithm. The first step in detailing the path follower

controller is to calculate some basic vectors that are used for calculations.

Figure 24. Bike plant is driven by path follower controller

The first vector is from the current position of the quadcopter C to the desired

waypoint D. This vector is calculated using the Simulink code in Figure 25 and utilizes the

distance method to get the magnitude as well as the vector CD


 itself. The vector CD


 will

be used in later calculations.

36

Figure 25. Simulink code that calculates the vector CD


The second vector is from the previous waypoint P to the desired waypoint D. The

Simulink code that calculates PD


 can be seen in Figure 26.

Figure 26. Simulink Code that calculates the vector PD


Both vectors CD


 and PD


 can be seen in Figure 27 and will be utilized in future

calculations of the position errors of the quadcopter. The first error in the bike example is

the distance from the current position to the normal of the line. The distance error is

replaced with

 

CD PDN CD u
PD


  
 





 (15)

that points from the current position of the quadcopter to the line. The graphical

representation of (15) can be seen in Figure 27 as the red vector labeled N. The Simulink

code that calculates (15) can be seen in Figure 28.

37

Figure 27. Vector triangle used in path follower controller. Adapted from [7].

Figure 28. Simulink code that calculates the normal vector N


 to the line

The second error in the bike example is the heading error where the bike had to use

heading to match the direction of the line and drive the error to zero. In the path follower

controller, a unit vector is calculated that points along the line for the previous point to the

desired point. This unit vector u is displayed in orange in Figure 27. These two vectors

are scaled by a proportional gain NK and uK then added together to achieve a resultant

vector. The

 

N uR K N K u   
 

 (16)

is then used to control the quadcopter and achieves the same goal of joining the line but in

a three-dimensional space.

Depending on whether the line is above or below the quadcopter, the quadcopter

will increase or decrease its altitude and maneuver in X and Y to join the line. The

38

quadcopter changing altitude is a significant change to the bike model and allows the full

three-dimensional space to be utilized for search.

The next section of the path follower controller is the transition tracker. This section

of code takes in the distance from the quadcopter to the desired waypoint and determines

if it is within a given threshold. This distance threshold allows the user to define a radius

around the desired waypoint that is acceptable to transition to the next line segment in the

search pattern. The transition tracker can be seen in Figure 29. The signal is converted from

a distance to a binary of 0 or 1. The value of zero means the quadcopter is not within the

desired waypoint radius and value one means it is within the desired waypoint radius. This

binary value is then recorded into a memory loop where the maximum value is recorded.

The maximum value is output as the transition counter and provides feedback to the

sequencer. When the transition counter increases by one, the next set of waypoints are

provided by the sequencer. When the transition counter exceeds the final waypoint index,

the “mission controller” is stopped. Reaching the last transition counter means that the

entire search area was exhaustively searched. More information about the search path will

be covered further in Chapter IV.

Figure 29. Simulink code for transition tracker

The last part of the path follower controller is the ideal simulation. This Simulink

code can be seen in Figure 30. Included in the ideal simulation is the R


 vector from above,

the velocity command and the velocity selector. The velocity command is the magnitude

of CD


 which is multiplied by the gain vK and then limited by a rate limiter.

39

Figure 30. Ideal quadcopter simulation

The yaw-error velocity selector was implemented so that when the heading error

between the actual quadcopter and the heading of the ideal quadcopter are greater than

0.174 radians (roughly 10 degrees), the velocity of the ideal quadcopter is set to zero. The

yaw-error velocity selector allows the real quadcopter to turn without receiving a large

change in velocity and a large heading change at the same time. The Simulink code that

executes this logic can be seen in Figure 31.

Figure 31. Velocity selector

4. Sequencer Details

The next highest-level controller is the sequencer itself. The sequencer is a

Stateflow subsystem that takes a list of waypoints from the path planner algorithm and

queues them for the path follower controller. The sequencer can be seen in Figure 32.

40

Figure 32. Sequencer Stateflow controller

In the first block of the sequencer the initial desired and previous waypoints are

assigned and the counter i is set to the first waypoint. Once the initial setup is complete,

the code then moves to the loop block. The first loop sends the desired and previous

waypoints to the path follower. This block will not advance until it gets feedback from the

transition tracker in the path follower controller. Once it does receive this feedback, the

logic advances to the second loop. In the second loop the current waypoint index is set to

the new transition counter and the counter i is increased by one. The second loop then

returns control to the first loop. The previous desired waypoint will be the current desired

waypoint and the next waypoint in the list will become the desired waypoint. The

transitioning of waypoints will continue until the last waypoint becomes the previous

waypoint at which time the transition tracker will stop the code.

5. Path Planner Details

The path planner is the highest level of code that is utilized in the “mission

controller.” It is an algorithm that is run in Matlab in order to provide an exhaustive search

of a box. The code takes in the corners of the search box and the sweep width of the sensor

and outputs an exhaustive search path in the form of waypoints that ensures complete

coverage of the sensor within the search box. More details of exhaustive search and search

paths are covered in Chapter IV. The waypoints from this algorithm can then be imported

automatically or can be manually transferred by the user.

41

6. Video Controller Details

Utilizing Simulink for video-processing was costly on processor and memory

resources and was ultimately too high for our experiment. A much more efficient method

of video processing was to read the ROS topic message from the HD camera directly into

a Python script that was utilizing the OpenCV library. The Python code creates a ROS node

that subscribed to the ROS topic /Bebop/image_raw. The ROS node then performed a hue

transformation on the image. The code applies a color mask to the image and then detects

the contour of the target of interest (in this case a tennis ball). Once the contour was defined,

the node outputs the color image with contour and text overlays to the user as well as a

binary image with the same overlays. For the tennis ball to register as detected, the tennis

ball must have a hue, saturation, and brightness that falls between the maximum and

minimum values. The tennis ball must also have a pixel area greater than 20 square pixels

and it must be detected for more than 7 of the last 14 frames. The detection case of these

two images can be seen in Figure 33 and 34. The no detection case of these two images

can be seen in Figure 35 and 36

The results of the Python detection software are sent to the “mission controller” as

binary data. This binary data represents a detection or no detection case as previously

mentioned.

Figure 33. Tennis ball detection in color

42

Figure 34. Tennis ball detection in binary

Figure 35. No detection in color

Figure 36. No detection in binary

43

IV. INTRODUCTION TO SEARCH THEORY

In this section, a basic understanding of search theory will be discussed. The scope

of this thesis is focused on utilizing search theory as a tool in order to evaluate the video

detector and the flight controller of the quadcopter. Ultimately, the idea of search theory is

to have a well-calibrated sensor move through an operational area with the purpose of

detecting a target. This general definition has no reliance on the platform that is performing

the search, the sensor that is being utilized, nor the type of target that the searcher is trying

to find. In actual operational problems, the platform, sensor, and target affect the outcome

of the search.

A. SENSOR DEFINITION

A sensor provides a platform with some understanding of the physical world. In

search theory, the sensor is a means of detecting a target within the physical world. The

sensor can be a touch sensor that informs the platform that it hits a target. It could be a

sonar sensor that receives a reflection of an object. It can also be a video feed that utilizes

detection software to determine if what is within the field of view is a target or not. This

last case is the method utilized in this thesis. The shape and capability of each sensor is

different not only between different sensors but also during different environmental

conditions. For instance, with the sonar detector, the sea condition can greatly affect the

capability for sound propagation through the water. Sea conditions can decrease the ability

for the sonar detector to receive the undistorted reflection from an object. For the video

feed, lighting conditions can greatly change not only the search parameters but also the

outcomes of the target detection. If the lighting conditions are too low, the sensor may not

be able to see the object. The best way to deal with these issues is to create a general

definition for the sensor.

B. “COOKIE CUTTER” SENSORS

The most general definition of all sensors is a “cookie-cutter” sensor. A “cookie-

cutter” sensor is a sensor that has a circular detection shape defined by a radius R [16].

Within the radius R the sensor has a 100% detection rate. Outside of R the detection rate

44

is zero [16]. Most sensors do not have a circular detection but can be converted into an

equivalent “cookie cutter” sensor. In order to convert a “non-cookie cutter” sensor into a

“cookie cutter” sensor, the sweep width of the sensor must be known. The sweep width is

how wide the sensor sweeps out as it is moved through the area and is defined as two times

the radius R. One of the ways to determine the sweep width for any sensor is to perform a

lateral range curves (LRC) calibration test. This method is only valid if the area being

searched is much larger than the sweep width of the sensor [16]. The

 0() 1 exp
bxp x for x

x

 
       
 

 (17)

is symmetric and unimodal and is used to derive the sweep width [16]. The

 ()W p x dx




 (18)

utilizing the (17) and is the area under the LRC. The full lateral range curve test for the

video sensor will be discussed in section E along with the procedure of its experimental

determination. The outcome of the calibration procedure is the probability distribution

function that explicitly accounts for the capabilities of a specific sensor. Once the sensor is

defined as a “cookie cutter” sensor, the next logical progression is to discuss types of

search.

C. BASIC TYPES OF EXHAUSTIVE SEARCHES

Exhaustive search is where every portion of the area to be searched is covered with

the “cookie cutter” sensor perfectly without overlap and without going outside the search

area [16]. This is the ideal definition of an exhaustive search and is not practical when it

comes down to implementing it. For example, consider a square as the simplest shape to

be searched. If utilizing a “cookie cutter” sensor which has a round shape, the sensor will

never be able to get into the corner perfectly. The mismatch between the corners of the

search are and “cookie cutter” sensor leaves areas that are unsearched unless the sensor is

brought outside the search area. The mismatch between the round sensor and the search

area can be seen in Figure 37.

45

Figure 37. Attempted exhaustive search. Source: [16].

Another example is if there is an object within the search area that causes a split in

the search path. The sensor must be picked up from the end of the first search path and

moved to the start of the second search path. The movement from one search path to

another causes the sensor to overlap previously searched areas. There are several ways of

performing an exhaustive search that are not ideal but are feasible and can accomplish

different tasks. From search and detection, the first is the boustrophedon method [17], [18].

In this method, the search traverses back and forth across the search area creating a pattern

like an ox would plow a field [17]. This method has its advantages because it is easier to

create the search path and yet it still covers the search area exhaustively. The second

method is the spiral-in method. This method is mostly used to trap moving targets. The

third method is the spiral-out method and is better for cases where the target is known to

be toward the middle of the search area [16]. In this thesis, we will be utilizing a simple

boustrophedon method that is not optimized. Optimizing even a simple boustrophedon

method are nondeterministic polynomial-hard problems [17]. The objective of this

approach was to design a generalized hardware and software framework that integrated the

guidance navigation and control (GNC) algorithms with the search theory methods. Further

advancement was made as the key data flow patterns and the fundamental detection

methods become integrated.

D. BOUSTROPHEDON SEARCH

The lawn mower algorithm as the vivid representative of the boustrophedon method

is commonly referred as a path consisting of straight lines and quick turns [17]. This

46

method lends itself well to computing waypoints for the path planner in Chapter III as each

waypoint is the turning points in the lawn mower pattern. This method allows the video

sensor to fly in long straight lines, which puts any potential target directly in the flight path

of the quadcopter. Also, the turns are quick which allow the camera to sweep through areas

that have already been searched by the lateral movement of the quadcopter. The quick turns

of the quadcopter reduce the time of researching previously searched areas and increase

search efficiency.

E. LRC RESULTS

As previously mentioned, a “non-cookie cutter” sensor can be made equivalent to

a “cookie cutter” sensor by performing a LRC test. In order to perform a LRC test, the

sensor (in this case, the video camera on the quadcopter) must be “passed” perpendicular

to a target at varying lateral ranges. This setup can be seen in Figure 38. The quadcopter

traverses along searcher track represented by the black line. In each test the quadcopter

traverses this path 10 times in each direction (back and forth) for each position of the tennis

ball. The first test starts with the tennis ball directly on the path of the quadcopter. The

tennis ball is then moved to the next location along the red arrow. The 10 passes are then

repeated along the searchers track. At each location the number of passes and detections

are recorded, so that a percentage of detection can be calculated for each lateral range. The

lateral range spacing was chosen to be 0.5 m and varied from zero to 2.5 m while the

distances was measured with the VMCS. The location of the tennis ball for each LRC test

is displayed in Table 1.

Figure 38. LRC test setup

47

Table 1. Tennis ball location for LRC test

Distance to
Centerline (m) 0 0.5 1 1.5 2 2.5
X position (m) 0.010 0.510 0.997 1.498 1.990 2.496
Y position (m) -3.642 -3.610 -3.602 -3.631 -3.620 -3.616
Z position (m) 0.768 0.767 0.761 0.761 0.758 0.758

The distance from the quadcopter to the tennis ball when it makes a detection is of

no consequence for the LRC test. The probabilities of detection from these different tests

are used to construct a LRC. The area under the LRC curve is the equivalent sweep width

of the “cookie cutter” sensor. The experimental results from the LRC testing can be seen

in Table 2.

Table 2. Detection rate of tennis ball for LRC

Distance 0 0.5 1 1.5 2 2.5
Detections 20 20 20 20 17 0

Spurious
Detections 0 0 0 0 0 0

Trials 20 20 20 20 20 20

Detection
Percentage 100% 100% 100% 100% 85% 0%

The detection results from each experiment can be seen in Figures 39–44. In each

of these time history figures, the red line represents the distance that the quadcopter was

from the tennis ball at any point within the test. The blue line represents a detection

or no detection case. A value of 0 represents no detection and a value of 1 represents a

detection of the tennis ball.

Figure 39 displays the centerline test. As expected, this test had the longest duration

of detection for the forward and backward translation of the quadcopter. As the tennis ball

is moved farther away from the centerline along the lateral line the detection duration was

smaller. The smaller detection duration was caused by the tennis ball being closer to the

48

frame of the video and passing out of the video screen quicker than when the ball is directly

in front of the camera.

Figure 39. LRC centerline test

As seen in Table 2 and in Figures 39–42, the LRC test from the centerline to the

1.5m lateral distance has a 100% detection rate with zero spurious alarms. These results

are a testament to the robustness of the video detection algorithm and the reason for using

the hue transformation in the video detection software.

Figure 40. LRC 0.5 m test

49

Figure 41. LRC 1 m test

Figure 42. LRC 1.5 m test

The 2 m lateral range test seen in Figure 43 had the first missed detection. The

missed detection was due to the ball being on the edge of the video screen. As previously

mentioned, for the tennis ball to register as detected the tennis ball must have a hue,

saturation, and brightness that falls between the maximum and minimum values, it must

have a pixel area greater than 20 square pixels and it must be detected for more than 7 of

the last 14 frames. At this lateral range, the angular speed of the ball is higher than before.

This increased speed coupled with the ball near the edge of the screen decreased the

detection capability.

50

Figure 43. LRC 2 m Test

During the 2.5 m test as seen in Figure 44, no detections were made. The video

detector was able to see the tennis ball but did not have enough time to register a full

detection. The angular speed of the tennis ball moving through the video frame was so fast

that by the time the ball had enough pixel area to meet the minimum 20 square pixels it did

not have enough time left in the video frame to meet the minimum 7 out of 14 frame

criteria. This result was expected, and the video detection software was not changed as

these features also allow not a single spurious detection in the 120 total passes.

Figure 44. LRC 2.5 m test

51

The culmination of the LRC tests can be seen in Figure 45 as the overall LRC. In

order to achieve 100% detection and to meet the “cookie cutter” sensor criteria, the radius

was chosen to equal 1.5 m. The radius of 1.5 m equated to an overall sweep width of 3m

for the video detector. Utilizing this sweep width, the path to perform an exhaustive search

of a 6m x 6m square is seen in Figure 46.

Figure 45. Lateral Range Curve

Figure 46. Waypoints for 6 x 6 m search utilizing 3 m sweep width

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

V. SIMULATION AND TESTING

This chapter covers the key results that allowed for the development of the overall

“mission controller” and the video detection algorithm. The first section covers the

waypoint tests and addresses the first concern of being able to execute repeatable flight

patterns. The next section covers the incremental tests of the video detector. This section

addresses the design and robustness of the video detector and its implementation.

The final section reviews the combination of both the motion controller and the

video detector into the “mission controller.” This section includes the test results of the

previous paths and the final search experiments These experiments highlight the

importance of calibrating the video detector and selecting the correct sweep width for the

search patterns. A wider sweep width resulted in a less complex search pattern while a

narrower sweep width resulted in a more complex search path. The cost of the mission is

also directly related to the sweep width.

A. EVALUATION OF MULTISEGMENT PATH FOLLOWING

The quadcopter traversing from one waypoint to the next is the most basic function

for the vehicle and is essential to perform its search task. The first test that was performed

was the “manual box” test, which is an “open-loop” experiment. In this experiment, the

quadrotor executes a sequence of pre-set control commands which allows for robust

repeatability of the experiment. This test verified that the quadcopter had the basic

functionality to execute the search algorithms in a fully autonomous flight. The next test

was an autonomous path following test that implemented the line following and the path

following control algorithms. The goal of both of these experiments was to design a

controller that offered repeatability when executing different search geometries.

1. Manual Box Test

The “manual box” test proved that the basic communication structure was

functioning properly and that all control channels could be controlled by giving basic step

commands. These step commands were later replaced by more complex control signals.

54

The “manual box” test utilized the PID control from the outer loop and manually shifted

the desired position over time. The controller would produce individual commands to fly

in X, Y, or Yaw. The commands were timed with a delay so that only one command was

sent at a time. This method was very rudimentary but was able to provide the proof of

concept that the quadcopter could traverse from one desired point to another. The results

of this test can be seen in Figure 47.

The “manual box” test had zero regard for the location of the quadcopter at the time

of the shift and had to be tuned numerous times to produce a decent box. The zero-feedback

shifting of controls meant that the quadcopter would not always make it to the corner of

the box or would overshoot before being given the turn command. The error between the

actual flight path and the desired path at the corners of the box can be seen in Figure 47.

After having this initial proof of concept, the next major progression was to implement the

line following controller introduced in Chapter III.

Figure 47. Manual waypoint test verifies basic functionality of the quadcopter

55

2. Pentagon Test to Prove Path Following

The “pentagon” test validated that the path follower and sequencer controllers were

working properly. The path follower allowed the quadcopter to join the lines between

sequential waypoints and the sequencer provided the sequenced waypoints. The ability to

follow a designed path using only waypoints was the first step in being able to design a

search algorithm and execute it.

This “pentagon” test was also the first test to utilize position feedback, waypoint

commands, and transition tracking. All these functions are mandatory in successfully

accomplishing a search mission. The results of the “pentagon” test can be seen in Figure

48. The pentagon shape was chosen for this test as it maximized the length of each segment

and provided multiple turns through all headings. The pentagon shape also allows the video

detector to see the entire flight area which test for possible spurious detections. The analysis

demonstrates that the addition of the path follower and sequencer controllers allowed the

quadcopter to be controlled autonomously by only providing the corner waypoints of the

pentagon. Individual commands and timing of the commands no longer had to be

calculated and programmed by the operator.

The additional autonomy gained by adding the path follower and sequencer also

increased the precision of autonomous search, which was vital to the successful execution

of vision-based detection. The best result from the “manual box” test, seen in Figure 47,

shows an error between the desired and actual flight path of 0.7 m. In the “pentagon” test,

the error between desired and actual flight path was never more than 0.42 m. The

“pentagon” test was also performed over a larger area. During the “pentagon” test, the

quadcopter averaged less than 0.2 m off the flight path. With the success of the “pentagon”

test, all controllers were in place to execute a search path flight. The next major milestone

was to develop and test the video detector described in Chapter III

56

Figure 48. “Pentagon” test desired and actual flight path

B. EVALUATION OF VISION-BASED DETECTION

The detection algorithm is the second half of the overall controller. The sections

below detail the tests used to develop and verify the robustness of the vision based detection

algorithm. Development of the vision-based detector started out in Simulink and quickly

progressed to Python and OpenCV as previously stated. The detection algorithm was

developed with a stationary quadcopter and a stationary target as seen in Chapter III. The

detector then advanced to a stationary quadcopter and a moving target. The stationary

quadcopter and moving target test is described below. Once the detection algorithm was

tuned and was successfully working, the next objective was to calibrate the detection

software and perform LRC analysis. The LRC testing was detailed in Section E of

Chapter IV. Additional to the LRC analysis, a dynamic video detection test was performed

that utilized a checkerboard pattern behind the target. The results of that test can be seen in

section 2 below.

1. Stationary Quadcopter Test

The “stationary quadcopter” test allowed for the detection algorithm to be fully

tested and tuned prior to any flights that relied on the video information. The quadcopter

does not have to be in flight for the video to be utilized due to the flexibility of the

Bebop_Autonomy SDK package. The first test with the quadcopter and target stationary

57

can be seen in Figures 33–36 in Chapter III. This stationary test provided the convenient

framework for the later dynamic tests that were to follow. The next step was to ensure that

the frame rate of 30Hz was fast enough to be able to catch moving objects and successfully

track them.

During the “stationary quadcopter” test, the target was moved through the video

frame to ensure that the quadcopters video feed had sufficient resolution and frame speed

to detect the target. The results of one of these tests can be seen in Figures 49–52, where

the ball was moved from the right side of the screen to the left side of the screen. Figure

49 shows the detection mask in yellow around the values that match the upper and lower

mask for the tennis ball that represented the target. In Figure 49, a red circle encircles the

yellow detection blob. The center of this circle is utilized as the centroid for the tennis ball

tracking algorithm.

It can be seen in Figures 50–52 that the detection blob changes shape as the lighting

conditions and shadow move with the ball. The diameter of the red circle also changes to

encircle the detection blob. The centroid and the known diameter of the red circle can be

utilized to estimate the distance from the target to the camera.

Figure 49. Dynamic “detection test” target far right

58

Figure 50. Dynamic “detection test” target centered

Figure 51. Dynamic “detection test” target left

Figure 52. Dynamic “detection test” target far left

59

2. Detection Algorithm Robustness Test

During the “robustness” test, the objective was to prove that the detection algorithm

was robust enough to detect the target in front of a widely varying background. The

background varied in color, features, shading, patterns, and lighting conditions. Having a

robust detection algorithm that does not provide spurious detections is essential for the

success of the overall search experiment. The setup for this test was the same as the LRC

test in Section E of Chapter IV except that instead of a neutral background for calibration

there were many similarly colored objects in the background. Additionally, a checkboard

pattern was placed directly behind the tennis ball. The addition of the checkerboard was an

attempt to excite spurious detection either on the checkboard or the background. The results

of this test can be seen in Figures 53–55. Figures 53–55 are zoomed in to 150% of the

actual image size and encompass the detect/no-detect text and the target in front of the

checkerboard. The detection algorithm has two major criteria for detect. The tennis ball

must have a pixel area greater than 20 square pixels and it must be detected for more than

7 of the last 14 consecutive frames. Figure 53 shows the frame from the video test prior to

the color or pixel size meeting the minimum requirements.

Figure 53. Frame prior to detection in the “robustness test”

60

Figure 54 shows the frame when the detection algorithm sees the target and the

target is greater then 20 square pixels. This frame has not registered as a detect, as it did

not meet the 7 out of the last 14 frames requirement of the detection algorithm.

Figure 54. Initial object detection frame prior to average being met

Figure 55 shows the full detection criteria met including the hue mask, object size

and average number of frames detected. During this test the only object that was detected

was the tennis ball. The checker board had no effect on the detection algorithm that clearly

illustrates high robustness of the algorithm. Likewise, the background that has many

similarly colored and shaped objects did not produce a spurious detection. The full image

can be seen in Figure 56.

Figure 55. Detection frame with the average detection value and blob size being
met

61

Figure 56. Full video background during the “robustness” test

Another interesting result that was seen during the “robustness” test was the video

detectors ability to find the tennis ball prior to the operator’s eye being able to distinguish

the tennis ball from the checker board background. This effect is illustrated in Figures 56–

58.

Figure 57. Initial detection in front of the entire background

62

Figure 58. Full detection in front of the entire background

All these tests verified that the detection algorithm was robust to the environment

and would not produce spurious detection during the full search and detection experiment.

C. KEY RESULTS OF PATH FOLLOWING AND SEARCH INTEGRATION

This section details the tests performed using the “mission controller.” The

“mission controller” is the culmination of the full motion controller and the video detection

algorithm. The “mission controller” is the highest level of control and encompasses all the

previously mention components. The first test was the “revisited pentagon” test which was

the “pentagon” test with the target in the field of view of the camera. The next test was a

generic boustrophedon search that has 5 lines and utilizes a 1-m sweep width. Next, is the

“box” search which is a boustrophedon search with the sweep width of 3 m determined

from the LRC Section E of Chapter IV. The last test is the boustrophedon search with the

modified sweep width that considers the hidden areas that resulted from the flight

geometry. Each of these tests correspond to the sweep width used to perform the complete

coverage calculation. A wider sweep width resulted in a wider lawn mower pattern and

conversely a narrower sweep width resulted in a tighter lawn mower pattern.

All these tests proved that the quadcopter could autonomously execute precise path

following while using the video detector to identify targets within the search area. The

defining characteristic of each of these tests is the sweep width that is used in order to

calculate the search path pattern for each of the test.

63

1. Pentagon Revisited

The “revisited pentagon” test proved that the motion controller and the video

detection algorithm were working together with known results from the video detector and

the flight path. The results of the combined “revisited pentagon” test was expected to be

just as precise as the “robustness” test and the “pentagon” test. In the “revisited pentagon”

test, the target was placed within the detection view of the quadcopter and the pentagon

flight pattern was flown again. The results of the flight test and the target location can be

seen in Figure 59. The regions along the flight path where detections occurred are color-

coded in green in Figure 59. The “revisited pentagon” test also produces tighter turns and

transitions compared to the “pentagon” test. The improved performance of the quadcopter

is due to the improved transit speed of the path follower and improved PID controller

performance in the outer loop controller. These results can be seen in Figures 48 and 59.

Figure 59. “Revisited pentagon” test with detection

During this test, the target was detected two times. The overall time history of

detection for the “pentagon” test can be seen in Figure 60. The first detection occurred as

the quadcopter was flying to the top point of the pentagon. The first detection can be seen

in Figure 59 and 61. The second detection was right at the end of the pentagon shape when

the target was at the left edge of the screen. The second detection can be seen in Figure 59

64

and 62. All results match or improve upon the results seen in the individual “robustness”

and “pentagon” tests.

Figure 60. Time history plot of detection

Figure 61. First detection during the “pentagon” test

65

Figure 62. Second detection during the “pentagon” test

The “pentagon” test proved that all the components of the “mission controller”

could work together and the target could be detected within the flight area. After the

“pentagon” test was successful, the next test was the 5-Line Boustrophedon search.

2. 5-Line Search Pattern—The Boustrophedon Experiment

The “5-line search” test was the first test to take sweep width into consideration to

provide complete coverage of the search area. The “5-line search” was performed with a

sweep width of 1 m to over search the search area and to provide a base line test in which

other experiments could be compared. For the “5-line search” test, the area being searched

was a 2.5m by 2.5m box. The quadcopter started and finished at the origin of the search

area and utilized the waypoints from the Path Planner. The flight path of the quadcopter

can be seen in Figure 63.

66

Figure 63. “5-line search” desired and actual flight path with target location

As expected, due to the over searching of the area, the target was detected along

four different legs of the search. The detection results can be seen in Figure 64 where the

detection regions are color-coded in green and overlaid on the flight path. The target

location can also be seen in Figure 64 compared to the flight path. The time history plot of

detection for the “5-line search” test can be seen in Figure 65. These results supported the

LRC testing seen in Figure 45 in Chapter IV.

Figure 64. “5-line search” test with color coded detection and target location

67

Figure 65. Time history plot of detection for the “5-line search” test

During the “5 line search” test the video detector had no spurious detections. The

detections during this test occurred along different lines of the search or while turning onto

the new path. Each detection had a different background and lighting conditions in each

case. This flight path also confirmed the results seen in the “robustness” test of the video

detector. The four detections for the “5-line search” test can be seen in Figures 66–69.

Figure 66. “5-line search” test first detection

68

Figure 67. “5-line search” test second detection

Figure 68. “5-line search” test third detection

Figure 69. “5-line search” test fourth detection

The “5-line search” provided the base line in which the other lawn mower pattern

searches will be compared.

69

3. Box Search Pattern

The “box search” test was the next evolution of the search pattern tests. The “box

search” test was an attempt to maximize the initial sweep width of 3 m taken from the LRC

data in Figure 45. The search area was 3 x 3 m. Due to the 3-m sweep width, the search

path only required a 1.5 x 1.5 m box to be traced out one time. This test was run multiple

times (more that 10 times) with repeatable success and it minimized the multiple detections

seen in the “5-line search” test. This test also reduced the amount of time required to search

a 3 x 3 m box. The overall flight time for the “box search” test was 46 seconds compared

to 138 seconds in the “5-line search” test. The flight path for one of these tests can be seen

in Figure 70.

Figure 70. “Box search” test with detection

The target location and detection region for the test was recorded and can be seen

in Figure 70. The time history plot of detection can be seen in Figure 71. In this “box

search” test, the detection algorithm identified the target three times. All three of these

detections occurred on the same leg of the search. The “box search” test gave a minimum

search time for the 3x3 m area and was used to compare the results of the final experiment.

70

Figure 71. Time history plot of detection of “box search” test

4. Modified Sweep Width

During the analysis of the “box search” test it was determined that the 3-m LRC is

only valid if the quadcopter is farther than 2.598 m from the target. This limitation is due

to the triangular shape of the video detector in front of the camera. The video detector has

a triangular shape. As the quadcopter turns, there may be a hidden region that is outside

the search areas of two consecutive legs. The geometry of such a turn can be seen in

Figure 72.

71

Figure 72. Detector geometry from the “box search” experiment with red area
representing a hidden spot.

In Figure 72, the green triangle is the swept area of the detection algorithm used to

cover the search area. The quadcopter has a field of view of 60 degrees total or 30 degrees

on either side of the centerline. The red line in Figure 72 is the flight path of the quadcopter.

When the quadcopter gets to the end of one segment, the green swept area rotates about

the turning point of the quadcopter. The initial and final geometry of the detector through

the turn can be seen in Figure 72 by the two green triangles. In Figure 72, the solid red

triangle is the missed search area. This missed search area is a result of the 30 degree half

field of view. If the camera had a 90-degree field of view this would not result in a missed

search area.

The base of the red triangle can be determined in generic terms of sweep width

utilizing geometry. The hidden triangle geometry can be seen in Figure 73. In

2tan(30)

2

sweepwidth

sweepwidth trianglebase
 


(19)

the half sweep width acts as the opposite side of the triangle and the adjacent side of the

triangle is composed of the half sweep width and the base of the red triangle. Using (19),

72

2
tan(30) 2

sweepwidth
sweepwidthtrianglebase  


(20)

can be expressed in terms of sweep width. Rearranging (20), the

1.5sweepwidthtrianglebase meters  (21)
2

must be true if the maximum sweep width is 1.5 m. After substituting (20) into (21)

2 1.5
tan(30) 2 2

sweepwidth
sweepwidth sweepwidth meters  


(22)

is presented in terms of the new sweep width. Solving (22) results in a new full sweep

width that is less than 1.73 m. Any search paths that use the hidden triangle geometry and

use a 3 m sweep width would cause a missed detection.

Figure 73. Hidden triangle during search

5. Hidden Triangle Search

The “hidden triangle” test was designed to exploit the hidden triangle mentioned in

the previous section. During the “hidden triangle” test, the target was not detected on any

of the legs of the test. As the quadcopter made a turn with the target inside of the hidden

triangle, the target only just broke the edge of the video frame. The quadcopter has a 30-

degree half angle view on either side of the centerline. The target was initially detected at

73

28.62 degrees but was not in the video frame long enough to meet the average frames

requirement. The flight path for this test can be seen in Figure 74. The time history plot of

detection can be seen in Figure 75 which shows no detection for this test.

Figure 74. “Hidden triangle” test with detection

Figure 75. Time history plot of detection for the “hidden triangle” test

74

A full detection was never made but the video detection algorithm did see the

object. The target was not within the video frame long enough to meet the 7 out of 14 frame

requirement for full detection. This initial detection of the target can be seen in Figure 76.

The “hidden triangle” test demonstrated hidden triangle does exist when the quadcopters

make a turn. This test also proves the robustness of the detection algorithm as it also did

not produce any spurious detection.

Figure 76. “Hidden triangle” test initial detection

The results from the “hidden triangle” test and the calculation from section 4

confirmed that a hidden triangle did exist at each corner of the box search pattern. In order

to eliminate the hidden triangle, the boustrophedon search was recalculated. The new half

sweep width used for this search path was 1.7 m. The new sweep width is 0.03 m less than

the maximum half sweep width determined in (22). The results of the search pattern can

be seen in Figure 77. This search path has 4 lines in the y-direction and will be referred to

as “4-line search” from this point forward. This new search algorithm offers complete

coverage during a search with sharp turns.

75

Figure 77. “4-line search” path

6. 4-Line Search Test

The “4-line search” utilizes a sweep width of 1.7 m to calculate the boustrophedon

pattern for the search path. The “4-line search” test provides complete coverage of a 3 x 3

m search area. The “4-Line search” is not as efficient at finding the target as the “box

search” test, but it eliminates the possible miss of targets within the hidden triangle. The

“4-line search” is also more efficient than the “5-line search” in terms of detections and

time of flight. The “4-line search” test results can be seen in Figure 78.

Figure 78. “4-line search” test results with detection and target location

76

The “4-line search” test took 116 seconds compared to the 46 seconds in the “box

search” test and the 138 seconds in the “5-line search” test. Figure 79 shows the target

being detected four times over three different legs of the “4-line search” test. Each detection

for the “4-line search” test can be seen in Figures 80–82.

Figure 79. Time history plot of detection for the “4-line search” test

Figure 80. “4-line search” test first detection

77

Figure 81. “4-line search” test second detection

Figure 82. “4-Line search” test third detection

D. CONCLUSION OF EXPERIMENTAL SECTION

1. Controller Results

Overall, the flight dynamics of the quadcopter greatly affect the performance of the

video detection algorithm. If the quadcopter flies too fast, then the target will be missed. If

it flies to slow, then the flight time of the mission will be extended. If the quadcopter cannot

maintain its position along the path, then the target may be missed. Therefore, a robust and

precise flight controller is needed in order to perform autonomous passive video sensing.

The current “mission controller” provides stable flight control and allows for

accurate detection of targets within a search area. The quadcopter can be controlled within

an average of 20cms from the desired flight path. The target can be detected with a 1.7 m

sweep width and up to a 3 m sweep width while on long straight flights. The triangular

78

detection region can be used to optimize the search path to provide complete coverage and

minimize mission time. The detection algorithm was able to identify the target and quantify

detections with a variety of backgrounds. None of the experiments produced a spurious

detection. Each of the experiments contributed or verified the building blocks to assemble

the final “mission controller.”

2. Hardware and Software Considerations

The Parrot Bebop quadcopter provides a rugged and robust platform with higher

level capabilities that can be used in an autonomous capability. The Parrot Bebop is

designed for taking video with slower more gradual flight dynamics. The overall flight

dynamics were set to the maximum possible values allowed by the Parrot software to

provide the fast flight dynamics. Despite the numerous crashes throughout testing, not a

single component was damaged to the point of needing to be replace. The durability of the

Bebop is attributed to Parrot Inc’s overall design and quality.

The Bebop’s communication structure allows for adequate data transmission in a

timely manner to provide the feedback needed for autonomous flight. The Simulink coding

environment allowed for rapid prototyping and numerous restructurings that ended with

the final “mission controller.” The coding flexibility of Simulink made the frequent design

and implementation of code quick and efficient. The Simulink code is processor and RAM

intensive and the “mission controller” would have to be moved to another programming

language to be run on a less capable computing platform.

ROS provided the communication paths to implement multiple programming

languages, running on two different platforms, to complete the overall control structure

that allowed for autonomous flight. The high-quality video sensor onboard the Bebop is

more than adequate to be used as a passive video sensor and to aid in the control and

mission of the autonomous quadcopter.

79

VI. CONCLUSIONS AND RECOMMENDATIONS

A. EXPERIMENTAL CONCLUSION

The experiment started with a COTSQ that was meant to be flown by an operator

with a transmitter and had no autonomous capability. A software and hardware

infrastructure was developed around the Bebop to enhance its existing capabilities. With

this infrastructure, the COTSQ was converted to an autonomous search platform with the

capability of generating a search trajectory according to the onboard detection capabilities

and its flight dynamics. The communication infrastructure of the research setup integrated

ROS, Simulink, Python, and the quadcopter. For a given search area, the “mission

controller” takes in the area geometry and the passive sensor characteristics to calculate the

desired search pattern. The “mission controller” then provides the controls to fly the

quadcopter through that search area autonomously. The motion controller also has the

built-in capability to enable the same autonomous search mission in an outdoor

environment.

The video detection algorithm has been proven robust for the task of search of

single and multiple targets; the algorithm is parameterized to enable different number and

general descriptive characteristics of possible target. The video detector can detect a

single/multiple target with the vision-based framework. The LRC calibration of the video

sensor has been tested and verified with numerous experimental results of the sweep width

being accurate and robust. Overall, the COTSQ was able to be converted to autonomous

flight and perform a military type mission of searching and detecting a target. With further

testing and research, COTSQs can be a viable alternative for the larger and more expensive

autonomous platforms that the military uses today.

B. EFFECTIVENESS OF SEARCH

After performing abundant searches with the Bebop quadcopter, the COTSQ was

able to successfully detect the target in every mission that the sensor could see the target

and had time to detect the target. The video detection algorithm was proven robust to

spurious detections and during the LRC testing it showed perfect detection results within

80

3 m. The repeatability of the flight dynamics was also shown during the LRC test with less

than 15 cm error along the flight path and 10 cm error across the flight path between each

of the passes. The design of the search algorithm and the creation of the flight path can still

be optimized but overall the “mission controller” is very reliable and effective at finding

the target along the flight path.

C. MOTION CONTROLLER IN FUTURE WORK

1. Modifying Control Architecture of the Autopilot

The flight dynamics is one of the most critical portions of the search algorithm

when it comes to passive video detection. Any flight that is outside of the optimal path has

a penalty in efficiency, flight time, and possible introduction of spurious or missed

detections. The current motion controller has predictable flight dynamics and search

capability. One way that this motion controller could be improved for future work is by

optimizing the autopilot architecture and its tuning in all control channels. The path

optimization would increase the efficiency of the search and detection procedure.

Specifically, the control commands interface provided by Bebop does not provide

the desired capability of accepting the low-level reference commands for the autopilot. In

the current state, the accepted commands include values proportional to the desired motion

along 3 axes of the body reference frame and the total speed command. The “analytical

conversion” of those commands into internal autopilot signals (like reference rates, speed,

and accelerations) are not exposed to the end user. While this approach certainly makes the

UAV safer and user-friendly in recreational flying, the approach does not allow developing

more aggressive and higher capability control algorithms.

2. Outdoor Search

The “motion controller” and the Parrot Bebop quadcopter can switch to outdoor

flight using the VIO and GPS data as discussed in Chapter III. Testing the outdoor flight

capabilities of the Parrot Bebop to perform a similar search outdoors would further prove

the robustness of the motion controller and the detection algorithm. This would also be a

logical next step in getting COTSQ into the hands of military operators. GPS data has 2

81

orders of magnitude lower accuracy than the VMCS. The reduced accuracy means the

“motion controller” would have to be augmented the positional feedback with an Extended

Kalman Filter to provide a similar level of positional feedback.

D. VIDEO DETECTOR IN FUTURE WORK

1. Decreased LRC Size

In all the searches, the target size produced a large sweep width compared to the

search area and thus produced a relatively quick search pattern. The large sweep width and

small search area aided in the rapid prototyping of the motion controller. Now that the

“motion controller” and the video detector have been fully developed, a decrease in the

sweep width would provide a more thorough examination of search path patterns and

optimization. Another way to accomplish this same result would be to increase the

operational search area. Either decrease sweep width or increased search area would also

increase the desire for cross-discipline collaboration between the operations research (OR)

and the mechanical engineering (ME) fields.

2. Use Video Detection Cone to Optimize the Search Path

The “cookie cutter” sensor that was used in this thesis provided an adequate ability

to define the sweep width and to allow a path to be designed using this sweep width. A

better approach would be to use the actual pyramid shape of the video detector. Using this

specific shape to optimize the search path would increase the efficiency of the actual

quadcopter flight.

3. Use the Pan and Tilt Function to Cover the Hidden Triangle

The HD camera on the front of the Bebop has a digital capability to pan and tilt the

image. This capability was not analyzed or tested during this thesis. One possible use of

this functionality would be to use the pan function to cover the hidden triangle during the

turns of the quadcopter without commanding the UAV to perform a full 360-degree

rotation in yaw. The hidden triangle is only a result of the narrow field of view compared

to the turn of the quadcopter. By using the pan of the video frame during turns in the same

direction as the turn, the hidden triangle could be eliminated. Covering the hidden triangle

82

digitally would allow the restriction on the LRC to be relaxed which would also greatly

increase the efficiency of the search.

4. Output the Target Location, Percent of Detection, and Timestamp So
a User Can Later Go Back and View the Video of the Event

The goal of this thesis is to build the tools so that a user does not have to sit in front

of a video feed and watch it in real time. The video feed that is output with the flag of

detect/no detect is not meant for the user but is a tool that is used to iterate the capability

of the detection algorithm. Ultimately, the video feed would not be displayed in real time

but would but recorded with the overlays and masks. The time history plot of detection

would then be used to earmark the video timeline so that an operator could go directly to

the key events and review it in a fraction of the time. Additional to this earmark on the

video, the centroid and radius of the target along with the GPS data of the quadcopter could

provide a location of the target. All this information could be coupled so that the user that

wants to view this afterward can access all this information at one time.

5. Machine Learning and Object Recognition

The capability for machine learning and object recognition has greatly increased

with parallel computing and algorithm approaches in the last 20 years. For example,

OpenCV has already been used to accomplish these tasks on station and dynamic

platforms. Another logical step would be to expand the capability of the detection

algorithm to start recognizing objects through machine learning. The video detection

algorithm could be trained on thousands of pictures of IEDs or explosives and when the

quadcopter flies through the area it could provide a confidence of detecting an explosive.

The machine learning and object detection algorithms could also be used during

search and rescue for survivors of a natural disaster. The detection algorithm could be

trained to look for humans instead of targets. Matlab has an example of face recognition

that uses machine learning [19]. Again, the detection algorithm could provide a confidence

of detection to an operator.

83

6. Indoor SLAM Using the Video Detector

The COTSQ quadcopters naturally lend themselves to indoor searches due to their

size and maneuverability. The video feed could not only be used to detect a single target

but could be used to detect all obstacles. A map of the obstacles could then be created. This

map could then be used by additional autonomous platforms or operators to go into the

building afterwards.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX A. COMMUNICATION SETUP

A. BEBOP_AUTONOMY PACKAGE INSTRUCTIONS

1. Go to https://bebop-autonomy.readthedocs.io/en/latest/installation.html

2. Follow directions for installation as the commands or git repository may have
changed.

3. Enter the following commands in the terminal:

a. sudo apt-get install build-essential python-rosdep python-catkin-tools
b. mkdir -p ~/bebop_ws/src && cd ~/bebop_ws
c. catkin init
d. git clone

https://github.com/AutonomyLab/bebop_autonomy.git/src/bebop_autono
my

e. rosdep update
f. rosdep install --from-paths src -i
g. catkin build

4. Once the Bebop_Autonomy Software Package has been installed. You will need to

setup the quadcopters for single or multiple quadcopter use.

B. SINGLE QUADCOPTERS

The bebop acts as the host for the UDP communications between the quadcopter

and the ground station. If you are only flying one quadcopter then you can use the stock IP

address of 192.168.42.1 and you will not need to update the launch files.

C. MULTIPLE QUADCOPTERS

If you are going to be flying more than one quadcopter at the same time you will

need to change the stock IP address on one or both quadcopters. You will also need to

change the IP address in the launch files in the /bebop_ws/src/bebop_autonomy/

bebop_driver/launch folder to match the IP address that you put on the quadcopter.

86

Background: For the ground station to connect and communicate with both

quadcopters, they need to be on individual subnets. The first three sets up numbers must

be individual from one another for example 192.168.101.1 and 192.168.102.1.

In this experiment is used the following IP addresses for the three quadcopters.

 A=192.168.101.1
 B=192.168.102.1
 C=192.168.103.1

 This allows for individual subnets so that each bebop can connect to the

laptop individually

D. CHANGING THE IP ADDRESS FOR MULTIPLE QUADCOPTERS

Reference https://github.com/tnaegeli/multiple_bebops to
 change the IP address

Instructions to change the IP address on each quadcopter:

1. switch the drone on and connect your pc to the drone access point

2. open a terminal in Linux

3. Connect the drone to the computer via a USB cable

4. press the on switch 4 times rapidly

a. make sure that adb is installed

i. if not use

1. sudo apt install adb

5. type “adb connect 192.168.43.1:9050” into the terminal window

6. type “adb shell”

7. type “mount -o remount,rw /”

8. type “ cd sbin” (there is a space in front of cd sbin)

87

9. type “vi broadcom_setup.sh”

i. move the cursor to the IP address and type i to start
writing, esc to stop and wq to exit.

10. change field IFACE IP AP=“192.168.42.1” to IFACE IP AP=“192.168.xxx.x,”
 where x represents any number which you have not assigned to other drones

11. hit esc to exit the writing interface

12. type “:wq” hit enter

13. save the file and exit

E. CHANGING BEBOP LAUNCH FILES FOR MULTIPLE QUADCOPTERS

1. Navigate to the folder /bebop_ws/src/bebop_autonomy/bebop_driver/launch

2. Open bebop_node.launch file for editing

3. Change the line
<arg name=“namespace” default=“bebop”/>
to
 <arg name=“namespace” default=“bebopA”/>
where A is a new number or letter to designate this bebop from the rest

4. Change the line

<arg name=“ip” default= “192.168.42.1”/>
to line
<arg name=“ip” default= “192.168.xxx.x”/>
 where the x’s match the x’s that was assigned to the bebop.

5. Save this as a new file with the name bebop_node_A.launch where A is the same

number or variable that you used above.

6. This is the new launch file that you will use to communicate with this bebop

7. Each Bebop will have to have its own launch file running before communication
will be established

F. SOURCING THE BEBOP FOR ROS

This will change the bashrc file so that the bebop_ws does not need to be sourced

everytime you open the terminal window.

88

1. Open the .bashrc file by typing “gedit .bashrc”

2. Place the following line at the end of the bashrc file

i. source /home/cavr/bebop_ws/devel/setup.bash

3. Save the file

4. Close all terminal windows

5. Reopen a terminal and the bebop_ws should not need to be sourced after this point

89

APPENDIX B. ESSENTIAL COMMANDS FOR BEBOP

For a full understanding of the commands that Parrot Bebop receives via the

bebop_autonomy package reference https://bebop-autonomy.readthedocs.io/en/latest/

A. CONNECTING TO THE BEBOP

1. Connect to bebop Wi-Fi
a. This can be done via the computer Wi-Fi connection or a Wi-Fi dongle. The

bebop will show up as a network in the network list. Each individual
quadcopter requires its own Wi-Fi network. This was accomplished with
multiple Wi-Fi dongles to a single ground station in this thesis.

2. Open a terminal window

3. Source the launch files (this must be done if the bashrc file was not changed)
a. source ~/bebop_ws/devel/setup.bash

4. Then run a launch file for each bebop (change the following to match the file name

of the launch file)
a. roslaunch bebop_driver bebop_node.launch
b. roslaunch bebop_driver bebop_node_A.launch
c. roslaunch bebop_driver bebop_node_B.launch
d. roslaunch bebop_driver bebop_node_C.launch

B. BASIC COMMAND LINE COMMUNICATION WITH THE BEBOP

1. Takeoff
a. rostopic pub --once /bebop/takeoff std_msgs/Empty
b. rostopic pub --once /bebopA/takeoff std_msgs/Empty
c. rostopic pub --once /bebopB/takeoff std_msgs/Empty
d. rostopic pub --once /bebopC/takeoff std_msgs/Empty

2. Land
a. rostopic pub --once /bebop/land std_msgs/Empty
b. rostopic pub --once /bebopA/land std_msgs/Empty
c. rostopic pub --once /bebopB/land std_msgs/Empty
d. rostopic pub --once /bebopC/land std_msgs/Empty

3. Emergency Stop

a. rostopic pub --once /bebop/reset std_msgs/Empty
b. rostopic pub --once /bebopA/reset std_msgs/Empty

90

c. rostopic pub --once /bebopB/reset std_msgs/Empty
d. rostopic pub --once /bebopC/reset std_msgs/Empty

Reference https://bebop-autonomy.readthedocs.io/en/latest/ for an understanding

of the values that can go into the next communications.

4. Zero Linear Velocity and Angular Velocity command

a. rostopic pub -1 /bebopA/cmd_vel geometry_msgs/Twist –’[0.0, 0.0, 0.0]’
‘[0.0, 0.0, 0.0]’

5. Zero Linear Velocity and Angular Velocity command

a. rostopic pub -1 /bebopA/cmd_vel geometry_msgs/Twist –’[linear.x,
linear.y, linear.z]’ ‘[angular.z, 0.0, 0.0]’

6. Camera Command

a. rostopic pub -1 /bebopA/camera_control geometry_msgs/Twist -- ‘[0, 0, 0]’
‘[0,0,0]’

7. Flip

a. rostopic pub -1 /bebopA/flip std_msgs/UInt8 – 0
b. rostopic pub -1 /bebopA/flip std_msgs/UInt8 – 1
c. rostopic pub -1 /bebopA/flip std_msgs/UInt8 – 2
d. rostopic pub -1 /bebopA/flip std_msgs/UInt8 -- 3

C. CHANGE THE DYNAMIC CONTROLS TO MAKE BEBOP MORE
ACROBATIC

This change must be executed every time that you run the launch file.

1. rosrun rqt_reconfigure

2. Setting values
a. pilotingSettingsMaxTiltCurrent= 90
b. PilotingSettingsAbsolutControlOn=1 on
c. SpeedSettingsMaxVerticalSpeedCurrent= 10
d. SpeedSettingsMaxRotationSpeedCurrent= 900
e. SpeedSettingsMaxPitchRollRotationSpeedCurrent=900

3. Click on the X in upper right corner to save changes

D. VIEW THE VIDEO FROM THE BEBOP VIA ROS FROM
COMMANDLINE

1. rosrun image_view image:=/bebopA/image_raw

91

APPENDIX C. VIDEO DETECTOR

This appendix goes over aspects of the video detector.

A. SIMULINK CODE FOR ROS VIDEO PROCESSING

This method was too cumbersome to be run in conjunction with the flight

controller, but might be useful for less processing intense controllers. The full Simulink

algorithm for video detection can be seen in Figure 83.

Figure 83. Full Simulink video detector

The most important piece of this code is the ROS Video Feed. This block subscribes

to a ROS topic with video data and then performs the necessary matrix conversion to

change the data from a string array to an RGB image matrix. The image that was used in

this thesis is an 856x480x3 RGB image. It is transmitted via the ROS topic as a 1x1232640

linear array. (Note in order to get the full array you must change the maximum size of

arrays in Simulink settings). The array size will be different if you have a different size

RBG image. The reshape block segments this linear array into 3 matrices. These matrices

are not in the correct order and must be reordered to produce the correct RGB image. The

full algorithm can be seen in Figure 84.

92

Figure 84. ROS topic subscription and matrix transformation

The logic that applies the Detect or No Detect text is a simple if statement that tests

for a blob of the correct size. The Detect or No Detect text is then merged with the original

video and output to a display or sent to perform some control function. The logic can be

seen in Figure 85.

Figure 85. Simulink logic to apply detect/no detect to video

B. FINDING COLOR CODE FOR IMAGE MASK

This section goes over the process of using the colors in the video feed from ROS

to determine the HSV upper and lower mask values

Connect the ground station to the Bebop via Wi-Fi

Run “roslaunch bebop_driver bebop_node_A.launch” from the command line

93

Run “rosrun image_view image:=/bebopA/image_raw” from the command line

Mouse over the object that you are trying to detect. The RGB values change
depending on where the mouse places the x and y values within the image

Record the RGB values seen in Figure 86

Figure 86. Video Feed with RGB values

Go to http://colorizer.org/ seen in Figure 87 [20]

Figure 87. Colorizer.org color palette. Source: [20].

94

Change the RGB sliders to match the RGB values that were recorded from the video

Record the HSV value that corresponds to the RGB value. This is a starting place

for a center value of the maximum and minimum values of the color mask

95

LIST OF REFERENCES

[1] Chief of Naval Operations, “A design for maintaining maritime superiority
Version 2.0,” Dec. 2018. [Online]. Available: https://www.navy.mil/navydata/
people/cno/Richardson/Resource/Design_2.0.pdf

[2] M. Goodrich. “Supporting wilderness search and rescue using a camera-equipped
mini UAV.” Journal of Field Robotics, vol. 25, no. 1 pp. 89–110, 2008. [Online].
doi: 10.1002/ROB.20226

[3] S. Waharte, and N. Trigoni, “Supporting search and rescue operations with
UAVs,” 2010 International Conference on Emerging Security Technologies,
Canterbury, 2010, pp. 142–147. doi: 10.1109/EST.2010.31

[4] K. Boudjit, and C. Larbes, “Detection and implementation autonomous target
tracking with a Quadrotor AR.Drone,” 2015 12th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), Colmar, 2015, pp.
223–230.

[5] E. Lopez, S. Garcia, R. Barea, L. M. Bergasa, E. J. Molinos, R. Arroyo, E.
Romera, and S. Pardo, “A multi-sensorial simultaneous localization and mapping
(SLAM) system for low-cost micro-aerial vehicles in GPS denied environments,”
Sensors(Basel), vol. 17, no. 4, pp. 802. [Online]. doi: 10.3390/s17040802

 [6] Parrot Inc, Parrot Bebop Drone User Guide, 2014. [Online]. Available:
https://www.wellbots.com/content/Parrot/Parrot%20Bebop%20Drone%20User%
20Guide.pdf

[7] Amazon, “Parrot Bebop Quadcopter Drone with Sky Controller Bundle (Blue).”
Accessed Jan. 2019. [Online]. Available: https://www.amazon.com/Parrot-Bebop-
Quadcopter-Controller-Bundle/dp/B00OOR911E

[8] ROS, “About ROS,” Accessed Jan. 2019. [Online]. Available:
http://www.ros.org/about-ros/

[9] K. P. Valavanis, and G. J. Vachtsevanos, Handbook of Unmanned Aerial
Vehicles. Dordrecht: Springer Netherlands, 2015.

[10] N. L. M. Jeurgens, “Identification and Control Implementation of an AR. Drone
2.0,” M.S. thesis, Dynamics and Control, Dept of ME, Eindhoven UT, The
Netherlands, 2017. [Online]. Available:
https://dc.wtb.tue.nl/lefeber/do_download_pdf.php?id=176

[11] N. S. Nise, Control Systems Engineering. Hoboken, NJ, USA: Wiley, 2015.

https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.20226
https://www.wellbots.com/content/Parrot/Parrot%20Bebop%20Drone%20User%20Guide.pdf
https://www.wellbots.com/content/Parrot/Parrot%20Bebop%20Drone%20User%20Guide.pdf
https://www.amazon.com/Parrot-Bebop-Quadcopter-Controller-Bundle/dp/B00OOR911E
https://www.amazon.com/Parrot-Bebop-Quadcopter-Controller-Bundle/dp/B00OOR911E
http://www.ros.org/about-ros/

96

[12] R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image Processing Using
MATLAB®, 2nd ed. United States: Gatesmark Publishing, 2009.

[13] OpenCV, “About OpenCV” Accessed Jan 2019. [Online]. Available:
https://opencv.org/about.html

[14] P. Corke. Robotics, Vision and Control Fundamental Algorithms in MATLAB.
New York, NY, USA: Springer, 2011.

[15] MathWorks, “About Stateflow,” Accessed Jan 2019. [Online]. Available:
https://www.mathworks.com/products/stateflow.html

[16] A. R. Washburn. Search and Detection, 5th ed. Monterey, CA, USA: Operations
Research Department, Naval Postgraduate School, Monterey, CA 2014.

 [17] E. M. Arkin, S. P. Fekete, J. S. B. Mitchell, “Approximation algorithms for lawn
mowing and milling,” Computational Geometry, vol. 17, no. 1–2, pp. 25–50, Oct
2000. [Online]. Available: https://ac.els-cdn.com/S0925772100000158/1-s2.0-
S0925772100000158-main.pdf?_tid=f6227e60-2681-4653-88e5-
b020e83038f9&acdnat=1549992227_dc36eb8d8a7c0d34853be38cbf7bbdd5

[18] S. W. Moon, D. H. Shim, “Study on Path Planning Algorithms for Unmanned
Agricultural Helicopters in Complex Environments,”International Journal for
Aeronautical and Space Sciences, vol. 10, no. 2, pp. Nov 2009. [Online]. doi:
10.5139/IJASS.2009.10.2.001

[19] MathWorks,, “Face Detection and Tracking Using CAMShift,” Accessed Feb
2019. [Online]. Available: https://www.mathworks.com/help/vision/examples/
face-detection-and-tracking-using-camshift.html.

DoD] Colorizer.org, “Color Picker,” Accessed Feb 2019. [Online]. Available:
http://colorizer.org/

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

	19Mar_Stalford_Aaron_First8
	19Mar_Stalford_Aaron
	I. Introduction
	A. MOTIVATION
	B. THESIS OVERVIEW
	C. Literature Review
	D. Thesis Contributions
	1. Hardware and Software Architecture
	2. Optical Lateral Range Curve Analysis
	3. Vector Path Following Algorithm
	4. Vision-Based Algorithms Onboard an Agile UAV

	II. Basic Quadcopter components
	A. introduction to The commercial-off-the-shelf quadcopter
	B. Communication structure for COTSQ
	C. Communication structure for Autonomous control
	D. Essentials of the SIX Degrees of Freedom dynamics of quadcopters
	E. System Identification
	1. Control Hierarchy
	2. Open Loop Data
	3. First Order Response Estimation

	F. computer vision Basics

	III. Control SYSTEM DESIGN
	A. Path Planning
	1. Traveling to a Point in Space
	2. Following a Line in Space

	B. Stateflow basics
	C. Overview of the Full control system interconnections
	1. Inner-loop Control
	2. Outer-loop Implementation
	3. Path Follower Details
	4. Sequencer Details
	5. Path Planner Details
	6. Video Controller Details

	IV. Introduction to Search Theory
	A. Sensor Definition
	B. “cookie cutter” Sensors
	C. Basic types of Exhaustive searches
	D. Boustrophedon search
	E. LRC Results

	V. Simulation and Testing
	A. Evaluation of multisegment path following
	1. Manual Box Test
	2. Pentagon Test to Prove Path Following

	B. Evaluation of Vision-based Detection
	1. Stationary Quadcopter Test
	2. Detection Algorithm Robustness Test

	C. KEY Results of Path Following and Search integration
	1. Pentagon Revisited
	2. 5-Line Search Pattern—The Boustrophedon Experiment
	3. Box Search Pattern
	4. Modified Sweep Width
	5. Hidden Triangle Search
	6. 4-Line Search Test

	D. Conclusion of Experimental section
	1. Controller Results
	2. Hardware and Software Considerations

	VI. Conclusions and recommendations
	A. Experimental Conclusion
	B. effectiveness of search
	C. Motion Controller in Future Work
	1. Modifying Control Architecture of the Autopilot
	2. Outdoor Search

	D. Video detector in future work
	1. Decreased LRC Size
	2. Use Video Detection Cone to Optimize the Search Path
	3. Use the Pan and Tilt Function to Cover the Hidden Triangle
	4. Output the Target Location, Percent of Detection, and Timestamp So a User Can Later Go Back and View the Video of the Event
	5. Machine Learning and Object Recognition
	6. Indoor SLAM Using the Video Detector

	appendix A. Communication Setup
	A. Bebop_Autonomy Package instructions
	B. Single Quadcopters
	C. Multiple Quadcopters
	D. Changing the IP address for multiple quadcopters
	E. Changing Bebop launch files for multiple quadcopters
	F. Sourcing the Bebop for ROS

	appendix B. Essential Commands for Bebop
	A. Connecting to the Bebop
	B. Basic command line communication with the bebop
	C. Change the dynamic controls to make bebop more acrobatic
	D. View the video from the bebop via ros from commandline

	appendix C. Video Detector
	A. Simulink Code for Ros video processing
	B. Finding color code for image mask

	List of References
	initial distribution list

